
When Device Delays Meet Data Heterogeneity in
Federated AIoT Applications

Haoming Wang
University of Pittsburgh

USA
hw.wang@pitt.edu

Wei Gao
University of Pittsburgh

USA
weigao@pitt.edu

Abstract

Federated AIoT uses distributed data on IoT devices to train

AI models. However, in practical AIoT systems, heteroge-

neous devices cause data heterogeneity and varying amounts

of device staleness, which can reduce model performance

or increase federated training time. When addressing the

impact of device delays, existing FL frameworks improperly

consider it as independent from data heterogeneity. In this

paper, we explore a scenario where device delays and data

heterogeneity are closely correlated, and propose FedDC, a

new technique to mitigate the impact of device delays in

such cases. Our basic idea is to use gradient inversion to

learn knowledge about device’s local data distribution and

use such knowledge to compensate the impact of device

delays on devices’ model updates. Experiment results on het-

erogeneous IoT devices show that FedDC can improve the

FL performance by 34% with high amounts of device delays,

without impairing the devices’ local data privacy.

CCS Concepts

• Computer systems organization → Embedded and

cyber-physical systems; • Computing methodologies

→ Artificial intelligence.

Keywords

Artificial Intelligence of Things, Federated Learning, Device

Delays, Data Heterogeneity

ACM Reference Format:

HaomingWang andWei Gao. 2025. When Device Delays Meet Data

Heterogeneity in Federated AIoT Applications. In The 31st Annual

International Conference onMobile Computing and Networking (ACM

MOBICOM ’25), November 4–8, 2025, Hong Kong, China. ACM, New

York, NY, USA, 16 pages. https://doi.org/10.1145/3680207.3723481

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

ACM MOBICOM ’25, Hong Kong, China

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1129-9/2025/11

https://doi.org/10.1145/3680207.3723481

1 Introduction

The Artificial Intelligence of Things (AIoT) [2, 20, 61] per-

ceive the heterogeneous data produced by IoT devices using

AI models, enabling many intelligent applications including

smart health [7, 41, 60], autonomous driving [3, 11, 21] and

smart cities [36, 37]. Since data in AIoT applications is gen-

erated at distributed sources but cannot be processed at a

central server due to large sizes [22] and privacy concerns

[69], Federated Learning (FL) [35] is usually used to train AI

models [18, 24]. In FL, each IoT device receives the global

model from the server and trains the model using local data,

and trained model updates are transmitted to and aggregated

at the server to update the global model. This procedure it-

eratively repeats until the global model converges.

FL in AIoT faces two major challenges, namely data hetero-

geneity and device delays. Data heterogeneity exists as data

on different IoT devices is not independent and identically

Distributed (i.i.d.) due to diverse user behaviors or environ-

mental contexts [19, 27], and leads to biased model updates

from devices that degrades the global model’s performance

[23, 30, 64]. Device delays, on the other hand, refer to the

extra time for the server to receive the model update from

a slow IoT device, and can be caused by various reasons in

AIoT, such as device’s insufficient compute power, exces-

sive amounts of local compute workloads, and disruptions in

communication between devices and the server. Such delays

could cause significant slowdown of FL training [25, 44].

Current FL frameworks use different ways to tackle device

delays. For example, conventional synchronous FL discards

delayed model updates if the delay is too long [29], and asyn-

chronous FL [9, 56] applies lower weights to delayed model

updates at server’s aggregation [10, 64]. However, most ap-

proaches consider device delays as independent from data

heterogeneity, and they cannot be applied to many AIoT

applications where device delays and data heterogeneity are

closely correlated, i.e., data of a certain class or with specific

features may only be available on some slow devices. For

example, as shown in Figure 1, in human activity recognition

(HAR) [45, 52], users doing certain outdoor activities (e.g.,

hiking, field repairs, etc) may always have limited network

connectivity during these activities, and model updates re-

garding these activities will always be delayed. Similar cases



ACM MOBICOM ’25, November 4–8, 2025, Hong Kong, China Haoming Wang and Wei Gao

Outdoors Indoors Sick users

Timely 
report

Sporadic 
report

cSporadicS
report Timely Ti l

report

Healthy users

Disaster site Normal areas

Server

Harsh 
condition

Normal 
condition

Human Activity Recognition Smart Health

Industrial SensingHazard Rescue

Server

Server Server

Figure 1: Federated AIoT applications where device

delays and data heterogeneity are correlated

are also found in hazard rescue operations [1] and indus-

trial manufacturing sites, where IoT devices operate in harsh

conditions [4]. In these applications, discarding the delayed

model updates or reducing their contributions at server’s

aggregation will exclude knowledge about unique data from

the global model, resulting in significant model bias.

Instead, knowledge in delayed model updates should be

fully aggregated into the global model. To do this without

affecting FL performance, as shown in Figure 2, a better

solution is to estimate and compensate the impact of device

delays on these updates before aggregation. Since the model

update at an IoT device is computed by training the global

model with device’s local data, when device delay is small

(e.g., within one FL epoch), we can estimate the impact of

device delays by applying Taylor expansion on the gradient

of delayed model update and use its first-order term as the

estimator [65]. However, device delays in AIoT could usually

be large or even unbounded [67], especially in many adverse

application contexts as shown in Figure 1. In these cases, the

error of such estimation will be significantly enlarged.

To accurately estimate and compensate the impact of un-

bounded device delay in AIoT, knowledge about the slow IoT

device’s local data must be sufficiently exploited. Based on

this vision, in this paper we present Delay Compensator in

FL (FedDC), a new FL technique that uses gradient inversion

[68] to learn knowledge about the slow device’s local data

distribution and further use such knowledge at the server to

mimic the slow device’s local training with the global model.

In this way, since the device’s local training procedure in

FL is independent from the device delay, our approach can

ensure accurate estimation on the impact of device delay in

any amount. In practice, the error of such compensation will

gradually increase as FL training progresses, and we adap-

tively decide when to end such compensation and switch

back to vanilla FL according to the specific training progress.

Server

Normal 
Device

Epoch 1 Epoch 2

Aggregation

Normal 
Device

Slow 
Device

Missing 
update

Compensation Aggregation

Delayed 
model update

: Global model : Local model updates : Devices’ local 
operations

Time

Figure 2: Delayed model updates will be compensated

and then aggregated to the global model. The devices’

local operations include local training and transmis-

sion of the trained model update to the server.

To our best knowledge, our work is the first that focuses on

the correlation between device delays and data heterogeneity

in FL, which is critical to federated AIoT applications. In

particular, our approach has the following advantages:

• FedDC retains the local training procedure at IoT de-

vices in FL to be completely unchanged, but executes

all extra computations at the FL server. It hence does

not incur any additional computation or communica-

tion overhead at IoT devices.

• FedDC does not require any auxiliary dataset nor the

IoT devices’ local models to be fully trained, and can

hence be applied to any stage of the FL procedure.

• In FedDC, the server is unable to recover any original

samples or labels of IoT devices’ local data, and hence

completely avoids impairing the devices’ data privacy.

We implemented FedDC on multiple types of IoT devices

including different models of smartphones, Raspberry Pi 4B

and NVidia Jetson Nano, and evaluated its performance on 3

real-world AIoT datasets. From our experiment results, we

have the following conclusions:

• FedDC is accurate. Compared with the baselines [8, 10,

15, 35, 65], it can improve the trained model’s accuracy

by up to 34%, even with high amounts of correlated

device delays and data heterogeneity.

• FedDC is adaptive. It exhibits significant improvements

of FL performance with different AIoT datasets, neural

network models and experiment settings.

• FedDC is lightweight. It incurs the minimum amount

of extra computations at the server, which does not

result in any delay on FL training.

2 Background and Motivation

In this section, we first demonstrate the FL performance

drop in AIoT when device delays meet data heterogeneity,



When Device Delays Meet Data Heterogeneity in Federated AIoT Applications ACM MOBICOM ’25, November 4–8, 2025, Hong Kong, China

(a) The impact on the global model’s accuracy (b) The effectiveness of applying weights on de-

layed model updates

(c) The error of compensating the impact of device

delays with first-order estimation

Figure 3: FL performance when device delays are correlated with data heterogeneity

and experimentally verify the ineffectiveness of existing ap-

proaches to tackling such FL performance drop. Such inef-

fectiveness, then, motivates us to instead learn knowledge

about slow IoT device’s local data by leveraging gradient

inversion, to ensure that such unique knowledge can be fully

incorporated into the global model.

2.1 FL Performance when Device Delays
meet Data Heterogeneity

Both device delays and data heterogeneity affect FL perfor-

mance in AIoT. However, when they are correlated, device

delays will only affect specific data classes that are uniquely

available on slow devices, as shown in Figure 1, and the

global model’s accuracy degradation in these classes will be

more significant. To demonstrate this, we conducted prelim-

inary experiments on 13 IoT devices that use FL to train a

3-layer MLP classification model on the PAMAP2 dataset

[43], which contains 13 classes of human activities. FedAvg

[35] is used for server’s aggregation. This dataset naturally

incorporates data heterogeneity, such that each device should

only contain data in one class [43]. When data heterogeneity

is uncorrelated with device delays, in each FL training epoch

we randomly select one device to apply a delay of 10 epochs.

Otherwise when data heterogeneity is correlated to device

delays, we randomly select one data class and assign delays

only to devices with data samples in that class. Results in

Figure 3(a) show that, in this case, the accuracy on selected

data class significantly drops, motivating the need of well

designed techniques to address such model accuracy drop.

Themost commonly used technique is to reduce theweights

of delayed model updates in aggregation [10, 29, 64] . How-

ever, when device delays are correlated to data heterogeneity,

although using lower weights on delayed model updates re-

duces the errors applied on the global model, it also prevents

the unique knowledge contained in these updates from being

sufficiently aggregated to the global model, leading to fur-

ther model accuracy drop as shown in Figure 3(b). Reversely,

if higher weights are applied to delayed model updates, it

improves the model accuracy in the data classes affected by

device delays, but also amplifies the error in the global model

and hence reduces the overall model accuracy in other data

classes. For example, in our experiments, the overall clas-

sification accuracy over the 13 classes of human activities

dropped from 68.6% to 65.2%.

These results show that modifying weights on delayed

model updates cannot address correlated device delays and

data heterogeneity. Instead, a better solution is to estimate

and compensate the impact caused by device delays onmodel

updates. The existing method of estimation is to apply Taylor

expansion on the gradient of delayed model update, and to

use its first-order term as the estimator by assuming the

device delay is always sufficiently small [15, 65]. For a model

update 𝑔(𝑤𝑡−𝜏 ) at time 𝑡 where 𝜏 is the amount of device
delay and𝑤𝑡−𝜏 indicates the global model used to compute

the update, the compensated update is calculated as

𝑔(𝑤𝑡 ) ≈ 𝑔(𝑤𝑡−𝜏 ) + ∇𝑔(𝑤𝑡−𝜏 ) (𝑤𝑡 −𝑤𝑡−𝜏 ), (1)

and the Hessian matrix ∇𝑔(𝑤𝑡−𝜏 ) is approximated as

∇𝑔(𝑤𝑡−𝜏 ) ≈ 𝜆 · 𝑔(𝑤𝑡−𝜏 ) � 𝑔(𝑤𝑡−𝜏 ) (2)

where � means element-wise multiplication and 𝜆 is a hyper-
parameter. However, the error of such first-order compensa-

tion, i.e., the high-order terms in Taylor expansion, increases

with the amount of device delay (𝜏). To verify this, we use
the same experiment settings as above, and results in Figure

3(c) show that when we use the compensated model update

in aggregation, the discrepancy caused in the global model

significantly enlarges when device delay grows. These re-

sults motivate designing a better method that compensates

the impact caused by device delays of any amount.

2.2 Gradient inversion

Our proposed approach leverages gradient inversion [68],

which was designed to learn knowledge about the training

data from the gradient of a trained model, by minimizing



ACM MOBICOM ’25, November 4–8, 2025, Hong Kong, China Haoming Wang and Wei Gao

FL Training
Program

Upload model 
update

Local training on Device 

Gradient
Inversion

Local data FL Training
Program

Aggregation

Server

Delayed update 

Current 
global model 

Compensated 
update 

Outdated
global model 

Figure 4: Overview of FedDC design

the difference between the trained model’s gradient and the

gradient computed from the estimated data. More specifically,

it solves the following optimization problem:

(𝑥 ′∗, 𝑦′∗) = argmin(𝑥 ′,𝑦′ ) ‖
𝜕𝐿[(𝑥 ′, 𝑦′);𝑤𝑡−1]

𝜕𝑤𝑡−1
− 𝑔𝑡 ‖22, (3)

where 𝑥 ′ and 𝑦′ indicate the estimated training data samples
and data labels, respectively,𝑤𝑡−1 is the trained model, 𝐿[·]
is model’s loss function, and 𝑔𝑡 is the gradient calculated
with the training data and𝑤𝑡−1. This problem can be solved

using gradient descent to iteratively update (𝑥 ′, 𝑦′).
The effectiveness of such learning is directly related to the

volume of training data, and is usually limited to estimating

a small number of training data samples [13, 63, 68]. The

quality of estimated data is sensitive to extra disturbances

applied to the model’s gradient, such as sparsification and

random noise [68]. These limitations of gradient inversion

motivate us to seek better ways of learning the knowledge

about slow IoT devices’ local data, but also highlight the

possibility of preventing such learning from impairing the

devices’ local data privacy.

3 Overview

As shown in Figure 4, the primary rationale of FedDC design

is to keep the IoT device’s local FL procedure completely un-

changed to avoid any extra communication and computation

overhead, but to compensate the impact of device delays at

the server. Upon receiving a delayed model update from a

device, since this update was calculated at the device using

an outdated global model, the server correspondingly caches

the outdated global model from previous epochs, and uses

this outdated global model to learn knowledge about the

device’s local data via gradient inversion. Such knowledge

is then used to compensate the error in the model update

due to device delays, and the compensated model update is

aggregated into the current global model.

3.1 Compensating Device Delays

We consider a semi-asynchronous FL scenario where some

normal IoT devices are not affected by device delays and

follow synchronous FL, and some other slow devices send

model updates asynchronously [8]: at time 𝑡 , the server re-
ceives a model update that is delayed by 𝜏 :

𝑤𝑡−𝜏
𝑖 = 𝐿𝑜𝑐𝑎𝑙𝑈𝑝𝑑𝑎𝑡𝑒 (𝑤𝑡−𝜏

𝑔𝑙𝑜𝑏𝑎𝑙 ;𝐷𝑖 ), (4)

which is computed by device 𝑖 using its local data 𝐷𝑖 to train

an outdated global model 𝑤𝑡−𝜏
𝑔𝑙𝑜𝑏𝑎𝑙

. If the device delay does

not exist, the corresponding model update should be

𝑤𝑡
𝑖 = 𝐿𝑜𝑐𝑎𝑙𝑈𝑝𝑑𝑎𝑡𝑒 (𝑤𝑡

𝑔𝑙𝑜𝑏𝑎𝑙 ;𝐷𝑖 ). (5)

The primary objective of FedDC, hence, is to estimate and

compensate the impact of device delays caused in𝑤𝑡−𝜏
𝑖 , by

approximating𝑤𝑡
𝑖 . Our primary approach is that the server

applies gradient inversion described in Eq. (3) on 𝑤𝑡−𝜏
𝑖 , to

learn an intermediate dataset 𝐷𝑒𝑠𝑡 that approximates the

device 𝑖’s local data 𝐷𝑖 , and then use 𝐷𝑒𝑠𝑡 to retrain the

server’s current global model (𝑤𝑡
𝑔𝑙𝑜𝑏𝑎𝑙

). In this way, we expect

that the outcome of such retraining can approximate𝑤𝑡
𝑖 .

Specifically, we randomly initialize each data sample and

label in 𝐷𝑒𝑠𝑡 , and then iteratively update 𝐷𝑒𝑠𝑡 by minimizing

𝐷𝑖𝑠𝑡 [𝐿𝑜𝑐𝑎𝑙𝑈𝑝𝑑𝑎𝑡𝑒 (𝑤𝑡−𝜏
𝑔𝑙𝑜𝑏𝑎𝑙 ;𝐷𝑒𝑠𝑡 ),𝑤

𝑡−𝜏
𝑖 ], (6)

using gradient descent, where 𝐷𝑖𝑠𝑡 [·] is a metric to evaluate
how much 𝑤𝑡−𝜏

𝑖 changes if retrained using 𝐷𝑒𝑠𝑡 . In FL, a

client’s model update comprises multiple local training steps

instead of a single gradient. Hence, to use gradient inversion,

we substitute the single gradient computed from 𝐷𝑒𝑠𝑡 in Eq.

(3) with the outcome of the device’s local training using 𝐷𝑒𝑠𝑡 .

To decide the appropriate choice of the metric 𝐷𝑖𝑠𝑡 [·], we
evaluate the global model’s accuracy when using different

metrics in Eq. (6), with the same experiment setting as de-

scribed in Section 2.1. As shown in Figure 5, using L1-norm

metric provides the most reliable performance, while using

either L2-norm or cosine distance metric result in signifi-

cance FL performance drop or instability in training. The

basic reason is that using L1-norm metric ensures unbiased

sampling in gradient inversion, and we will use L1-norm as

the choice of metric in the rest of this paper.

However, according to [31, 62], it is difficult for gradient

inversion to precisely reconstruct individual samples of the

training data. Instead, in FedDCwe ensure that the estimated

𝐷𝑒𝑠𝑡 provides accurate knowledge about the device’s local



When Device Delays Meet Data Heterogeneity in Federated AIoT Applications ACM MOBICOM ’25, November 4–8, 2025, Hong Kong, China

Figure 5: The global model’s accuracy when using dif-

ferent metrics for 𝐷𝑖𝑠𝑡 [·] in Eq. (6)

data distribution. In Section 4.1, we will further show that,

with such knowledge about data distribution, FedDC can

still ensure close approximation to𝑤𝑡
𝑖 .

FedDC’s capability of such approximation is also related

to the size of 𝐷𝑒𝑠𝑡 , which decides both the converging loss

and computing cost of gradient inversion. In Section 4.2, we

provide more details about how to balance between these

two aspects by deciding the proper size of 𝐷𝑒𝑠𝑡 .

Furthermore, the effectiveness of FedDC’s approximation

on improving the global model’s accuracy will diminish, as

the FL training progresses and the global model’s change

over different training epochs becomes smaller. As a result,

the approximation approach in FedDC would result in larger

error in the late stage of FL training, and we need to adap-

tively switch back to vanilla FL as needed. More details of

such switch are in Section 4.3.

(a) PAMAP2 [43] (b) ExtraSensory [52]

Figure 6: Iterations and time needed for gradient in-

version with different AIoT datasets

3.2 Reducing the Computation Overhead

Gradient inversion is known to be computationally expen-

sive, due to its iterative optimizations as specified in Eq. (3).

As shown in Figure 6, for different AIoT datasets, we will

need at lead 2,000 iterations for the loss of gradient inversion

to converge, and the time needed for each iteration ranges

between 7.4ms and 31.6ms depending on the size of 𝐷𝑒𝑠𝑡 ,

when running on a NVidia A5000 GPU with 24GB memory.

With Such high computing overhead, hence, will become a

major burden for the FL server.

To reduce such computation overhead, our approach is to

reduce the complexity of optimization objective in Eq. (3)

via sparsification. Existing studies showed that model up-

dates in FL are highly sparse [17, 34], and FL performance is

mainly determined by <5% of the largest gradients in model

updates. Hence, gradient inversion only needs to perform

on these gradients with high magnitudes, leading to signifi-

cant overhead reduction without affecting the accuracy of

approximation. Further, we also reduce the scope to which

gradient inversion is applied, based on the difference of delay

compensation in different FL training epochs. More details

of such reduction of computation overhead are in Section 5.

(a) Original IMU data (b) Estimated 100 samples (c) Estimated 1 sample

Figure 7: Examples of comparing the IMU data esti-

mated by using gradient inversion with the original

IMU data in the ExtraSensory dataset [52]

3.3 Protecting IoT Devices’ Data Privacy

One major concern of using gradient inversion for delay

compensation in FL is the possible leakage of IoT devices’

local data privacy, as FedDC uses gradient inversion to learn

knowledge about devices’ local data. To verify this risk, we

checked the time-series data samples in 𝐷𝑒𝑠𝑡 that gradient

inversion estimated from the ExtraSensory dataset [52]1.

Results in Figure 7(b), as an example, show that in a typical FL

setting where each IoT device has a large volume of local data

samples, it is hard to correlate the estimated data samples in

𝐷𝑒𝑠𝑡 with these many samples in the original data. However,

in another setting shown in Figure 7(c) where data on each

IoT device only contains few data samples, these samples

can be precisely recovered by gradient inversion.

To eliminate such risk of privacy leakage, we adopt the

similar sparsification techniques to mitigate the capability

of gradient inversion on recovering the IoT device’s original

data samples. Our results in Section 6 show that, even in the

most challenging setting, we can prevent the data samples

estimated by gradient inversion from being recognizable by

both human eyes and a neural network classifier.

4 Approximating Model Updates without
Device Delays

In this section, we provide more details about FedDC’s ap-

proach to learning the intermediate dataset 𝐷𝑒𝑠𝑡 and using

𝐷𝑒𝑠𝑡 to approximate model updates without device delays.

1We noted that in most AIoT applications, the data produced at IoT devices

exhibits as time series. Typical examples of such data include humans’ body

motion, location, heart rate and surrounding environmental conditions, as

contained in the PAMAP2 [43] and ExtraSensory [52] datasets.



ACM MOBICOM ’25, November 4–8, 2025, Hong Kong, China Haoming Wang and Wei Gao

4.1 Towards Accurate Approximation

We first validate that the loss surface in model’s weight space,

when computed using 𝐷𝑒𝑠𝑡 , can closely resemble that com-

puted using𝐷𝑖 , thereby enabling the computation of a similar

gradient. More specifically, we visualize the loss surface by

projecting it onto a 2D space, as described in [28]. The re-

sults in Figure 8, with a 3-layer MLP model being trained

on the PAMAP2 dataset [43], indicate that the loss surface

computed using 𝐷𝑒𝑠𝑡 closely mirrors that obtained using 𝐷𝑖

on the current global model 𝑤𝑡
𝑔𝑙𝑜𝑏𝑎𝑙

, and such difference is

as small as 0.05 when measured as the cosine distance.

Using the raw training data Using the Using random noise

The current global model weights Gradient direction

Figure 8: Visualization of the loss surface

Based on such similarity, whenwe use𝐷𝑒𝑠𝑡 to approximate

𝑤 𝑖
𝑡 as described in Eq. (6), we compare its approximation er-

ror with the first-order compensation [15, 65] described in

Eq. (1), by measuring the difference between the approxi-

mated 𝑤 𝑖
𝑡 and the corresponding ground truth without de-

vice delays. With that same experiment settings as described

above, results in Figure 9 show that FedDC slightly outper-

forms first-order compensation when the device delay is

small. However, as the delay increases, FedDC achieves sig-

nificantly lower errors. Notably, when the device delay is 20

epochs, FedDC reduces the estimation error by 40%.

Figure 9: Comparing the approximation error of FedDC

with that of first-order compensation [15, 65], mea-

sured in cosine distance

4.2 Deciding the size of 𝐷𝑒𝑠𝑡

Gradient inversion is equivalent to data resampling from

the IoT device’s local data distribution. Hence, a sufficiently

large 𝐷𝑒𝑠𝑡 is necessary to ensure unbiased data sampling and

minimize the loss of gradient inversion. However, if 𝐷𝑒𝑠𝑡

is too large, the computational time per iteration becomes

unnecessarily high.

The intuitive solution is to let 𝐷𝑒𝑠𝑡 be as large as the IoT

device’s local training data 𝐷𝑖 [58]. However, in AIoT appli-

cations, devices’ local data is usually produced continuously

at high frequencies [26, 47], resulting in large volumes of

data but high similarity between consecutive data samples.

Such similarity enables opportunities to reduce the size of

𝐷𝑒𝑠𝑡 without affecting the convergence of gradient inversion.

We further investigated such opportunities with a 3-layer

MLP model and the PAMAP2 dataset [43]. As shown in Table

1, when the size of 𝐷𝑒𝑠𝑡 is 1/16 of that of 𝐷𝑖 , we can effec-

tively minimize the loss of gradient inversion at convergence,

without incurring extra computation overhead. Further in-

creasing the size of 𝐷𝑒𝑠𝑡 results in very small reduction of

the loss but significantly increases the computing overhead.

Size 1/128 1/64 1/32 1/16 1/4 1/2 1

Time (s) 5.3 9 27 62 119 208 391

GI loss 8.7 4.4 0.55 0.39 0.37 0.37 0.36

Table 1: The converging loss and computing cost of

gradient inversion (GI) with different sizes of𝐷𝑒𝑠𝑡 , mea-

sured as the ratio of the IoT device’s local data size

4.3 Adaptively Switch back to Vanilla FL

As shown in Table 1, even with a large 𝐷𝑒𝑠𝑡 , the loss of

gradient inversion at convergence can never be reduced to

zero, meaning that the approximation in FedDC can never be

100% accurate but will always contain errors. On the other

hand, as the FL training progresses and the global model

converges, the difference between the current and outdated

global models reduces, eventually to zero. This implies that

in the late stage of FL training, FedDC’s approximation and

compensation to device delays would result in more errors

to the global model, as shown by our experiment results in

Figure 10 using the same settings as above.

Figure 10: FedDC’s error of approximation at different

stages of FL training

In this case, FedDC should adaptively switch back to vanilla

FL in the late stage of FL training. The major challenge of

deciding when to switch is that at any time 𝑡 in FL training,
as long as the device delay is still present, the ground truth



When Device Delays Meet Data Heterogeneity in Federated AIoT Applications ACM MOBICOM ’25, November 4–8, 2025, Hong Kong, China

of the model update unaffected by device delay (i.e.,𝑤𝑡
𝑖 ) is

unknown, and it is hence difficult for the server to estimate

the current approximation error of FedDC. To address this

challenge, we observe that, according to Eq. (5), 𝑤 𝑖
𝑡 is cal-

culated by device 𝑖 using the current global model 𝑤𝑡
𝑔𝑙𝑜𝑏𝑎𝑙

,

and hence it will arrive at the server at a later time, namely

𝑡 + 𝜏 ′. Therefore, we can empirically decide to switch at time
𝑡 + 𝜏 ′, if by then we find that using FedDC’s approximation
to𝑤𝑡

𝑖 results in more errors compared to using the actually

received𝑤𝑡
𝑖 . Details of such switching are in Algorithm 1.

Algorithm 1 Decision on whether to switch

1: initialize 𝑆𝑤𝑖𝑡𝑐ℎ ← False

2: for each global epoch 𝑡 + 𝜏 ′ do
3: if having ground truth (𝑤̂𝑡

𝑖 ) of the previous estima-

tion (𝑤𝑡
𝑖 ) then

4: if Switch = False then

5: retrieve previous estimations𝑤𝑡
𝑖 ,𝑤

𝑡−𝜏
𝑖

6: 𝐸𝐹𝑒𝑑𝐷𝐶 (𝑡) ← 𝐷𝑖𝑠𝑡 (𝑤̂𝑡
𝑖 ,𝑤

𝑡
𝑖 )

7: 𝐸𝑣𝑎𝑛𝑛𝑖𝑙𝑎 (𝑡) ← 𝐷𝑖𝑠𝑡 (𝑤𝑡−𝜏
𝑖 ,𝑤𝑡

𝑖 )

8: if 𝐸𝐹𝑒𝑑𝐷𝐶 (𝑡) > 𝐸𝑣𝑎𝑛𝑛𝑖𝑙𝑎 (𝑡) then
9: 𝑆𝑤𝑖𝑡𝑐ℎ ← True

10: if Switch = True then

11: Compensate for delayed updates in this epoch

12: else

13: Directly aggregate the delayed updates

5 Compute Efficiency at FL Server

5.1 Sparsification in Gradient Inversion

To reduce the computation overhead caused by gradient

inversion on the FL server, our primary approach is gradient

sparsification that only involves the important gradients

with large magnitudes into gradient inversion. As shown

in Figure 11, by only involving the top 5% of gradients, we

can reduce 55% of iterations in gradient inversion, with only

slight increase in the error of approximating model updates

without device delay. Further increasing the sparisification

rate to 99%, on the other hand, will lead to significant increase

of the approximation error.

Figure 11: Computation reduction and approximation

error under different rates of sparsification

5.2 Selective Computation

Another possibility to further reduce the computation over-

head is to apply gradient inversion in a limited scope of

compensating model updates. First, if the local data on IoT

devices only exhibit small changes over different FL epochs,

we do not need to estimate 𝐷𝑒𝑠𝑡 every time from scratch,

but can instead initialize 𝐷𝑒𝑠𝑡 with the results in previous

epochs, hence reducing the number of iterations required

for gradient inversion. As shown in Figure 12, if the devices’

local data is completely unchanged, we can further reduce

the number of iterations by 91%. Even if the devices’ local

data changes by 50%, the extra reduction can still be 82%.

Figure 12: The number of iterations reduced by initial-

izing 𝐷𝑒𝑠𝑡 with the results in previous epochs

Similarly, when the IoT device’s local data exhibits small

changes over time, the delayed model updates received from

the same IoT device in different training epochs could also

overlap and share much knowledge in common. In this case,

we only need to compensate the delayed model updates that

contain unique knowledge. We define such uniqueness using

the difference in updates’ gradient direction with others and

quantify it via cosine distance, such that

𝐷𝑐 (𝑤
𝑡1
𝑖 ,𝑤

𝑡2
𝑖 ) = 1 −𝑤𝑡1

𝑖 ·𝑤𝑡2
𝑖 /(‖𝑤

𝑡1
𝑖 ‖ · ‖𝑤𝑡2

𝑖 ‖), (7)

where𝑤𝑡1
𝑖 and𝑤𝑡2

𝑖 are both vectorized to compute their inner

products and norms. We set the threshold of selective com-

putation as the average of such difference between model

updates at different IoT devices. Since the scale of cosine dis-

tance could change during FL training [50], such averaging

can add some adaptivity to the threshold.

6 Privacy Protection

Existing work proved that sparsification can reduce the gra-

dient inversion’s capability of estimating the training data

from a trained model [68], and we showed in Section 5.1

that sparsification causes only negligible impact on error

compensation. Hence, in FedDC we will also exploit such

sparsification to prevent the IoT device’s local data samples

from being precisely estimated by gradient inversion.

As shown in Figure 7, gradient inversion’s capability of

data estimation largely depends the size of training data

being estimated. To ensure sufficient power of privacy pro-

tection, we still focus on the most challenging setting show



ACM MOBICOM ’25, November 4–8, 2025, Hong Kong, China Haoming Wang and Wei Gao

(a) Original data (b) 0% sparsification

(c) 40% sparsification (d) 95% sparsification

Figure 13: IMU data estimated with different sparsifi-

cation rates, on ExtraSensory dataset [52]

(a) Original data (b) 0% sparsification

(c) 40% sparsification (d) 95% sparsification

Figure 14: Heart rate data (normalized) estimated with

different sparsification rates, on PAMAP2 dataset [43]

in Figure 7(c) where device’s local data contains only one

data sample, which is the sole target for gradient inversion to

estimate. Figures 13 and 14, then, show the effectiveness of

different sparsification rates on reducing gradient inversion’s

capability of data estimation. A sparsification rate of 40% can

produce noticeable disturbances in the estimated data, and

when the sparsification rate is 95%, the estimated data looks

completely different from the original data samples.

To quantitatively verify such privacy protection, we calcu-

late the similarity between estimated and raw data samples,

using different metrics including mean square error (MSE)

and dynamic time warping (DTW) distance [46]. As shown

in Table 2, with a 95% sparsification rate, the estimated data

is more like random noise than the original data.

Metric Dataset 0% 40% 95% Noise

MSE ↓
PAMAP2 1e-4 0.08 0.33 0.38

ExtraSensory 1e-5 0.04 0.34 0.42

DTW ↓
PAMAP2 0.07 0.5 1.03 1.14

ExtraSensory 0.02 0.18 2.1 2.25

Table 2: The similarity between the estimated data and

raw data samples, with different sparsification rates

We also used the PAMAP2 dataset to train a MLP model,

which is then used to classify the data samples estimated by

gradient inversion. Results in Figure 15 show that using a

sparsification rate of 95% could effectively make the model’s

classification results to be nearly random guesses2. Note that,

since the PAMAP2 dataset we used is a relatively easy one for

the HAR classification task, using a simple neural network

classifier can achieve good accuracy as shown by the existing

work [16]. Therefore, we consider a simple MLP model as

capable of recognizing patterns in the data and sufficient for

evaluating our approach’s capability of privacy protection.

In addition, our proposed gradient sparsification is also

compatible with other privacy protection methods, such as

local differential privacy (LDP) [51]. More specifically, when

LDP is applied, gradient inversion will not aim to recover the

original data distribution of clients, but instead to estimate a

data distribution that can produce the noisy gradient. Such

recovered distribution is then used to compute the noisy

gradient on the current global model.

Figure 15: Classification accuracy of estimated data

7 Implementation

As shown in Figure 16, we implement FedDC on 10 IoT

devices, including: i) 6 smartphones of different models (Pixel

XL, Pixel 2, Pixel 4, Pixel 5, Pixel 7, LG-G5) with different

hardware configurations and compute power; ii) 2 Raspberry

Pi 4B with a 1.5GHz Cortex-A72 CPU and 4GB memory; and

iii) 2 NVidia Jetson Nano with a 128-core Maxwell GPU and

2Since the PAMAP2 dataset contains 13 data classes, the classification result

is a random guess when the accuracy drops to 7.7%.



When Device Delays Meet Data Heterogeneity in Federated AIoT Applications ACM MOBICOM ’25, November 4–8, 2025, Hong Kong, China

CSmart-
phones

VEmbedded 
Devices

Raspberry Pi 4B Nvidia Jetson Nano

Pixel 
XL

Pixel 
2

Pixel 
4

Pixel 
5

Pixel 
7

LG
G5

Figure 16: Devices used in experiments

4GB memory. A workstation with a NVidia RTX A5000 GPU

is used as server, which communicates with devices via WiFi.

Our implementation builds on the Flower FL framework

[6]. Since FedDC retains the IoT devices’ local FL training pro-

cedure completely unchanged, we adopt the original client

FL program provided by Flower, such that each device in

every global epoch computes its update using the SGD opti-

mizer with a learning rate of 0.01 and a momentum of 0.5. We

modify the aggregation program at the FL server to add the

proposed approaches of device delay compensation using

gradient inversion, and the server ends a global epoch when

70% of devices have finished uploading their model updates.

To maximize the compute efficiency at FL server and

minize the time needed for aggregation, we parallelized the

process of gradient inversion on the FL server and the FL

training on IoT devices. As shown in Figure 17. the server

first aggregates all the model updates from IoT devices that

are not affected by device delays and initiates a new global

epoch. Then, the server computes gradient inversion for

other delayed model updates for the previous epoch, while

the IoT devices compute their model updates for the new

epoch. Once the gradient inversion at the server completes,

the compensated model updates (from the previous epoch)

can be aggregated into the global model in the new epoch.

Delayed 
updates

Gradient 
inversion

Next epoch begins

Model updates
without delay

Aggre

IoT
device

FL server

Aggre

Local training

Figure 17: Parallelization of computations

8 Performance Evaluation

We evaluate the performance of FedDC over multiple AIoT

datasets in different federated application domains, including

human activity recognition (HAR) and hazard site surveil-

lance, in both of which device delays and data heterogeneity

are closely correlated.

• PAMAP2 [43] with 13 classes of human activities and

>2M data samples collected using IMU and heart rate

sensors. A 3-layer MLP model is used in FL.

• ExtraSensory [52] with over 300k data samples col-

lected using IMU, gyroscope and magnetometer sen-

sors on smartphones. Besides 7 main labels of activities

(e.g., standing, laying down, etc), it also provides 109

additional labels describing more specific activity con-

texts. An 1D-CNN model is used in FL.

• MDI [38] with 6,000 images about 6 classes of natural

disasters. A pre-trained ResNet18 model is used in FL.

We compare FedDC’s performance in classification task

with the following baselines that tackle devices delays in FL:

• Unweighted aggregation (Unweighted): Aggregat-

ing delayed model updates without applying weights.

• Weighted aggregation (Weighted): Aggregating de-

layed model updates with weights that are inversely

proportional to the amount of device delays [10].

• FL with asynchronous tiers (Asyn-Tiers): It clus-

ters devices into asynchronous tiers based on device

delays and uses synchronous FL in each tier [8].

• First-order compensation (1st-Order): It applies

Taylor expansion on the gradient of delayed model

update and uses its first-order term as estimator [65].

• Future global weights prediction (W-Pred): As-

suming delays as pre-known, the future global model

is predicted by first-order method above and used to

estimate model updates without delays [15].

Figure 18: Distribution of data samples’ classes over

time, from one subject in the PAMAP2 dataset

8.1 Experiment Settings

In all experiments, FedAvg [35] is used for aggregating model

updates. Hence, Unweighted aggregation is FedAvg with

delays, and Weighted aggregation applies extra weights to

model updates in FedAvg 1st-Order, W-pred, and FedDC

further modify such weights for compensation, and Asyn-

Tiers separately uses FedAvg in each tier. Note that the usage

of FedAvg is independent from FedDC and other baselines,

and can be replaced by other FL frameworks such as FedProx



ACM MOBICOM ’25, November 4–8, 2025, Hong Kong, China Haoming Wang and Wei Gao

(a) Low delay (b) Medium delay (c) High delay

Figure 19: FL training procedure with different amounts of delays on the PAMAP2 dataset

[29]. For Weighted aggregation, we set the weights following

[48] as 1/(1 + 𝑒𝑎 (𝜏−𝑏 ) ), where 𝜏 is the amount of delays in
global epochs and we set 𝑎=0.25 and 𝑏=10. For Asyn-Tiers,
we set 3 asynchronous tiers that are also weighted by the

number of devices in different tiers [8].

Data heterogeneity. We enforce different levels of data

heterogeneity by partitioning the dataset to IoT devices in

different ways. First, in most AIoT datasets, data samples

collected from a subject within a short time window will fall

into the same class, as exemplified in Figure 18. Hence, being

different from existing FL studies which set data heterogene-

ity using a Dirichlet distribution to sample client datasets

[70], we emulate high data heterogeneity using a short time

window, during which an IoT device only has data in one

class. Similarly, low data heterogeneity is emulated over a

long time window, during which data samples in different

classes are continuously added to IoT devices.

Device delays. For each dataset, we randomly select three

data classes that will be affected by low, medium and high

amounts of device delays, respectively. In each FL training

epoch, the specific device delays are sampled from a Gamma

distribution: for high delays, its mean value is set to 10×

of the average time of a global epoch. The mean values for

medium and low delays are set as 5× and 2×, respectively.

With the parallelization approach described in Section 7,

the duration of a global epoch in AIoT is mainly determined

by the IoT devices’ local training, which is usually slow due

to the devices’ limited local computing power. On the de-

vices we used in evaluations, the average durations for local

training with the three datasets are 28.1s (PAMAP2), 55.6s

(ExtraSensory), and 23.7s (MDI), respectively. Note that, such

durations are decided by the weakest client in the FL system.

8.2 FL Performance with Different
Amounts of Device Delays

We first evaluate the FL model’s accuracy in data classes af-

fected by different amounts of device delays. Given that the

accuracy across different data classes in a dataset could sig-

nificantly vary, even for the same method, we report model

accuracy on data classes affected by delay as the relative im-

provement compared to unweighted aggregation, to clearly

show the performance differences among different methods.

Besides, we also report the overall performance on the entire

dataset, as the absolute percentage of classification accuracy.

Our method only adds extra computations of gradient inver-

sion on the server, and the communication cost between the

server and clients remains the same as that in conventional

FL. Hence, we do not report the communication cost in the

evaluations of this paper.

As shown in Table 3, when the amount of device delays is

low, FedDC results in slight degradation in FL performance

because the error in delay compensation outweighs the er-

ror caused by delayed model updates. However, when the

amount of device delays increases, the delay compensation in

PAMAP2 / MLP ExtraSensory / 1D-CNN MDI / 2D-CNN

Delay low medium high overall low medium high overall low medium high overall

Unweighted 0.0% 0.0% 0.0% 69.9% 0.0% 0.0% 0.0% 48.7% 0.0% 0.0% 0.0% 76.5%

Weighted -5.4% -13.9% -43.5% 68.9% -18.4% -46.5% -62.3% 47.5% -3.7% -14.1% -23.3% 76.3%

Asyn-tiers +0.7% +0.4% -0.5% 69.9% -2.0% +0.8% -2.9% 48.9% -1.3% +1.8% 0.0% 76.5%

1st-Order +2.3% +1.5% +0.6% 70.01% +3.6% +2.5% -2.2% 49.3% -0.5% +1.7% +0.7% 76.9%

W-Pred +2.6% +1.3% +0.6% 70.0% +0.4% +1.5% -1.3% 49.6% -0.2% +1.7% +0.4% 76.8%

FedDC -1.9% +5.4% +12.3% 70.6% -3.0% +16.9% +34.2% 50.3% -1.2% +4.1% +7.7% 76.8%

Table 3: The trained model’s accuracy in data classes affected by device delays, with different amounts of device

delays. Accuracy is shown as the relative improvement compared to unweighted aggregation.



When Device Delays Meet Data Heterogeneity in Federated AIoT Applications ACM MOBICOM ’25, November 4–8, 2025, Hong Kong, China

(a) PAMAP2 [43] (b) ExtraSensory [52] (c) MDI [38]

Figure 20: FL performance with different levels of data heterogeneity

FedDC can significantly improve FL performance compared

to baselines. In particular, with a high amount of device delay,

FedDC outperforms the best baseline (W-Pred) by 35.5% on

ExtraSensory dataset and 11.7% on PAMAP2 dataset. Note

that the average classification accuracy on ExtraSensory

dataset is around 50% and the lowest among three datasets.

This means that FedDC can achieve the most performance

improvement in challenging federated AIoT scenarios.

Meanwhile, Table 3 showed that the average accuracy

over all classes in FedDC remain nearly the same with slight

improvement. Since device delays in our experiment settings

only affect 3 data classes which constitute only a small por-

tion of the entire dataset as described in Section 8.1, these

results show that FedDC’s delay compensation did not affect

the FL performance in other data classes.

Results in Figure 19 further show that, besides achieving

higher accuracy in the trained model, FedDC also improves

the quality and stability of training, especially with high

amounts of device delays.

Percentage of data samples

Time

Group 1

Group 2

0%

100%

Figure 21: Variant distribution of global data over time

8.3 FL Performance with Different Levels of
Data Heterogeneity

Wealso compared FedDC’s performancewith baselineswhen

different levels of data heterogeneity are present. Experiment

results in Figure 20 show that, when the data heterogeneity is

high, weighted aggregation suffers significant performance

drop due to the biased model being trained. In contrast,

FedDC can effectively improve the FL performance on all the

three datasets, and such improvement is similarly more sig-

nificant on more challenging datasets such as ExtraSensory.

On the other hand, when the level of data heterogeneity is

low, FedDC retains the similar level of FL performance with

other baselines, indicating that our approach to switching

back to vanilla FL, as described in Section 4.3, can effectively

avoid unnecessary errors in delay compensation.

Figure 22: Slow convergence of FL training with the

variant global data distribution, on PAMAP2 dataset

8.4 FL Performance under Variant Global
Data Distribution

We further consider a more challenging FL scenario where

the global data distribution continuously varies over time,

resulting in much slower convergence of FL training. Such

variance of data distribution commonly exists in practical

AIoT applications. For example, in the HAR application, hu-

man activities in daytime and nighttime can significantly

differ. As shown in Figure 21, we emulate such variant data

distribution by dividing the global dataset corpus into two

parts, and smoothly transit the current global data from one

part to another part as FL training progresses. In practice,

such transition is concurrently ongoing on all IoT devices.

Based on such settings, results in Table 4 show that FedDC

significantly outperforms all the baselines on different AIoT

datasets. Comparing results in Table 4 with those in Table

3 where data on each IoT device is fixed, we found that

FedDC achieves larger performance improvement when the

global data distribution is variant. This is because with the



ACM MOBICOM ’25, November 4–8, 2025, Hong Kong, China Haoming Wang and Wei Gao

(a) PAMAP2 [43] (b) ExtraSensory [52] (c) MDI [38]

Figure 23: FL performance with different rates of gradient sparsification

PAMAP2 EtraSensory MDI

Unweighted 38.9% 20.3% 65.1%

Weighted 23.8% 0% 59.0%

Asyn-tiers 37.5% 16.7% 66.8%

1st-Order 42.3% 22.4% 65.1%

W-Pred 42.1% 22.4% 65.1%

FedDC 53.5% 34.7% 69.3%

Table 4: FL performance with variant global data dis-

tribution and high device delays

variant global data distribution, the FL training converges

very slowly and FedDC’s delay compensation hence always

results in smaller errors compared to directly aggregating

delayed model updates into the global model. Such slow

convergence of FL training can be verified in Figure 22.

8.5 Computing Cost at the FL Server

Gradient inversion at the FL server is computationally expen-

sive and we proposed techniques in Section 5 to reduce the

server’s computing costs. As shown in Table 5, applying 95%

gradient sparsification (§5.1) and selective computation (§5.2)

can significantly reduce such computing costs to be within

the duration of one global epoch, when being tested on a

NVidia A5000 GPU. Since the IoT devices’ local trainings are

computed in parallel with FL server’s computation, as shown

in Figure 17, such reduction of computing cost ensures that

computing gradient inversion at the FL server will not incur

extra delays in the end-to-end FL training process3. Besides,

since FedDC does not incur any extra computations at IoT

devices, their local computing and communication costs are

exactly the same as those in vanilla FL.

FL model MLP 1D-CNN 2D-CNN

Full Computation 21.63 15.12 19.66

Selective Computation 2.54 2.23 3.71

Selective Computation + 95% SP 0.91 0.82 0.88

Table 5: Computing delay of gradient inversion at the

server, measured as the number of global FL epochs

Meanwhile, we also evaluated the impact of these compu-

tationally efficient techniques on FL performance. Figure 23

3Note that, aggregation of model updates at the FL server is very lightweight

and incurs negligible computing overhead in most FL scenarios.

show that using 95% gradient sparsification only results in

<2% of FL performance drop.

8.6 Sensitivity Analysis

Switching to vanilla FL. As demonstrated in Section 4.3,

we need to switch back from FedDC to vanilla FL at the late

stage of FL training. However, since our approach cannot

compute the compensation error in the current global epoch,

there is always a latency in switching. To investigate the

impact of such latency on FL performance, we checked the

FL performance with different choices of switching using

the PAMAP2 dataset. Results in Figure 24 show that FL per-

formance with switching is significantly higher than that

without switch, but using different choices of switching has

little impact on FL performance, indicating that FedDC is

not sensitive to the latency in switching.

Figure 24: Performance with different switch points

Device’s local FL training. FL performance could also be

affected by the local training programs being used at IoT

devices [42]. To evaluate the performance of FedDC in dif-

ferent FL settings, we use three different optimizers (SGD,

SGDW, Adam) for IoT device’s local model updates, and re-

sults in Figure 25 show that FedDC and all baselines exhibit

consistence FL performance with SGD and SGDW optimiz-

ers. However, with adaptive optimizers such as Adam that

increases the gradient divergence when the devices’ local

data is not i.i.d. [23], the FL performance significantly drops.

8.7 Scalability Analysis

To further explore the performance of FedDC in large-scale

AIoT applications [39], we simulate a larger FL systems with

50 to 300 IoT devices, 10% of which are affected by high



When Device Delays Meet Data Heterogeneity in Federated AIoT Applications ACM MOBICOM ’25, November 4–8, 2025, Hong Kong, China

Figure 25: FL performance with different local training

optimizers and high amounts of device delays

device delays, using a central FL server. As shown in Figure

26, FedDC can maintain a consistent level of FL performance,

even when the number of IoT devices increases by 30×.

Figure 26: FL performance in large-scale AIoT systems

9 Related Work

Weighted aggregation.Most existing solutions to device

delays in FL are based on weighted aggregation [10].These

solutions initially introduce metrics to quantify the global

model’s delay on each client device, which may be based

on either time [48, 66] or model discrepancies [54]. Subse-

quently, thesemetrics are used to calculate a decay coefficient

for slower devices and apply it to model updates. Other ap-

proaches adopt more fine-grained weighting [10, 53], where

different submodules are weighted individually.

However, weighted aggregation is always biased towards

fast devices, and affects global model’s accuracy when device

delays and data heterogeneity in FL are correlated. Others

suggest to use semi-asynchronous FL, where the server ei-

ther aggregates client model updates at a lower frequency

[40] or clusters clients into different asynchronous “tiers” ac-

cording to their update rates [8]. However, doing so cannot

completely eliminate the impact of device delays, because the

server’s aggregation still involves delayed model updates.

Other data estimation methods. Our approach to com-

pensating device delays using gradient inversion is inspired

by the existing work of estimating the device’s local training

data from the trained model. Some existing work trains a gen-

erative model [70] and compels its generated data samples

to exhibit high predictive values on the original model. [59]

also proposes to directly optimize randomly initialized input

data until it performs well on the original model. However,

their accuracy of knowledge transfer is generally too low to

ensure precise compensation of device delays. Other efforts

enhance the quality of knowledge transfer by incorporating

natural image priors [33], using another dataset to introduce

general knowledge [57], or exploiting the model’s activation

sparsity [32, 49], but require extra datasets. Moreover, all

these methods require the devices’ local models to be fully

trained, which is usually infeasible in FL.

10 Discussions

Other data modalities in FL. Our evaluations involve data

modalities of time series and images, but FedDC can also be

applied to other modalities such as text. Since text is decom-

posed into discrete tokens, we can perform data estimation

in the continuous embedding space [68]. Since errors oc-

cur when projecting the estimated data from the embedding

space into discrete tokens, estimating text data is harder for

gradient inversion [12, 14]. This suggests that when applying

FedDC to text data, the risk of data privacy leakage is lower.

Handling multimodal data. A common approach to han-

dling multimodal data is to use submodules to extract feature

representations from different modalities and then fuse them

[5], and this approach also applies to FedDC. Considering

that the risk of privacy leakage may vary in each modality

[14], different sparsification rates should be used.

More complicated models in FL. The main difficulty of

training a complicated neural network model in FedDC is

that it incurs much higher computing overhead on IoT de-

vices. Such overhead can be reduced by using a pre-trained

model and freezing lower layers. Parameter-efficient training

techniques, such as model quantization [55], can also be used.

These techniques are orthogonal but applicable to FedDC.

Cost of handling different versions of model. In FedDC,

the server needs to tackle multiple versions of models and

data, which introduce extra cost in practice. Without loss of

generality, we assume that the server is much more power-

ful than AIoT devices in capabilities of computation, com-

munication and storage. Additionally, the aforementioned

parameter-efficient training techniques can also be applied

to reduce the computing cost of handling different versions

of AI models.

11 Conclusion

In this paper, we present FedDC, a new FL technique that

uses gradient inversion in compensating the error caused

correlated device delays. Experiment results show that our

technique can largely improve the model accuracy while

keeping privacy well-protected.

Acknowledgments

We thank the shepherd and reviewers for their comments

and feedback. This work was supported in part by National

Science Foundation (NSF) under grant number IIS-2205360,

CCF-2217003, CCF-2215042, andNational Institutes of Health

(NIH) under grant number R01HL170368.



ACM MOBICOM ’25, November 4–8, 2025, Hong Kong, China Haoming Wang and Wei Gao

References
[1] Lulwa Ahmed, Kashif Ahmad, Naina Said, Basheer Qolomany, Junaid

Qadir, and Ala Al-Fuqaha. 2020. Active learning based federated

learning for waste and natural disaster image classification. IEEE

Access 8 (2020), 208518–208531.

[2] Kevin Ashton et al. 2009. That ‘internet of things’ thing. RFID journal

22, 7 (2009), 97–114.

[3] Sheraz Aslam, Michalis P Michaelides, and Herodotos Herodotou. 2020.

Internet of ships: A survey on architectures, emerging applications,

and challenges. IEEE Internet of Things journal 7, 10 (2020), 9714–9727.

[4] Jordi Mongay Batalla, Constandinos X Mavromoustakis, George Mas-

torakis, Neal Naixue Xiong, and Jozef Wozniak. 2020. Adaptive posi-

tioning systems based on multiple wireless interfaces for industrial

IoT in harsh manufacturing environments. IEEE Journal on Selected

Areas in Communications 38, 5 (2020), 899–914.

[5] Khaled Bayoudh, Raja Knani, Fayçal Hamdaoui, and Abdellatif Mtibaa.

2022. A survey on deep multimodal learning for computer vision:

advances, trends, applications, and datasets. The Visual Computer 38,

8 (2022), 2939–2970.

[6] Daniel J Beutel, Taner Topal, Akhil Mathur, Xinchi Qiu, Javier

Fernandez-Marques, Yan Gao, Lorenzo Sani, Kwing Hei Li, Titouan Par-

collet, Pedro Porto Buarque de Gusmão, et al. 2020. Flower: A friendly

federated learning research framework. arXiv preprint arXiv:2007.14390

(2020).

[7] Luca Catarinucci, Danilo De Donno, Luca Mainetti, Luca Palano, Luigi

Patrono, Maria Laura Stefanizzi, and Luciano Tarricone. 2015. An

IoT-aware architecture for smart healthcare systems. IEEE internet of

things journal 2, 6 (2015), 515–526.

[8] Zheng Chai, Yujing Chen, Ali Anwar, Liang Zhao, Yue Cheng,

and Huzefa Rangwala. 2021. FedAT: A high-performance and

communication-efficient federated learning system with asynchro-

nous tiers. In Proceedings of the International Conference for High Per-

formance Computing, Networking, Storage and Analysis. 1–16.

[9] Ming Chen, Bingcheng Mao, and Tianyi Ma. 2019. Efficient and ro-

bust asynchronous federated learning with stragglers. In International

Conference on Learning Representations.

[10] Yang Chen, Xiaoyan Sun, and Yaochu Jin. 2019. Communication-

efficient federated deep learning with layerwise asynchronous model

update and temporally weighted aggregation. IEEE transactions on

neural networks and learning systems 31, 10 (2019), 4229–4238.

[11] Juan Contreras-Castillo, Sherali Zeadally, and Juan Antonio Guerrero-

Ibañez. 2017. Internet of vehicles: architecture, protocols, and security.

IEEE internet of things Journal 5, 5 (2017), 3701–3709.

[12] Dimitar I Dimitrov, Mislav Balunović, Nikola Jovanović, and Martin

Vechev. 2022. Lamp: Extracting text from gradients with language

model priors. arXiv e-prints (2022), arXiv–2202.

[13] Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and Michael

Moeller. 2020. Inverting gradients-how easy is it to break privacy in

federated learning? Advances in neural information processing systems

33 (2020), 16937–16947.

[14] Samyak Gupta, Yangsibo Huang, Zexuan Zhong, Tianyu Gao, Kai Li,

and Danqi Chen. 2022. Recovering private text in federated learning

of language models. Advances in neural information processing systems

35 (2022), 8130–8143.

[15] Ido Hakimi, Saar Barkai, Moshe Gabel, and Assaf Schuster. 2019. Tam-

ing momentum in a distributed asynchronous environment. arXiv

preprint arXiv:1907.11612 (2019).

[16] Chaolei Han, Lei Zhang, Yin Tang, Wenbo Huang, Fuhong Min, and

Jun He. 2022. Human activity recognition using wearable sensors by

heterogeneous convolutional neural networks. Expert Systems with

Applications 198 (2022), 116764.

[17] Anbu Huang, Yuanyuan Chen, Yang Liu, Tianjian Chen, and Qiang

Yang. 2020. RPN: A residual pooling network for efficient federated

learning. In ECAI 2020. IOS Press, 1223–1229.

[18] Kai Huang, Boyuan Yang, and Wei Gao. 2023. Elastictrainer: Speeding

up on-device training with runtime elastic tensor selection. In Pro-

ceedings of the 21st Annual International Conference on Mobile Systems,

Applications and Services. 56–69.

[19] Kai Huang, Hanyun Yin, Heng Huang, and Wei Gao. 2024. Towards

Green AI in Fine-tuning Large Language Models via Adaptive Back-

propagation. ICLR (2024).

[20] Kai Huang, Xiangyu Yin, Tao Gu, and Wei Gao. 2024. Perceptual-

Centric Image Super-Resolution using Heterogeneous Processors on

Mobile Devices. In ACM MobiCom.

[21] Kai Huang, Xiangyu Yin, Heng Huang, and Wei Gao. 2025. Modal-

ity Plug-and-Play: Runtime Modality Adaptation in LLM-Driven Au-

tonomous Mobile Systems. In ACM MobiCom.

[22] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet,

Mehdi Bennis, ArjunNitin Bhagoji, Kallista Bonawitz, Zachary Charles,

Graham Cormode, Rachel Cummings, et al. 2021. Advances and open

problems in federated learning. Foundations and trends® in machine

learning 14, 1–2 (2021), 1–210.

[23] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi,

Sebastian Stich, and Ananda Theertha Suresh. 2020. Scaffold: Sto-

chastic controlled averaging for federated learning. In International

conference on machine learning. PMLR, 5132–5143.

[24] Latif U Khan, Walid Saad, Zhu Han, Ekram Hossain, and Choong Seon

Hong. 2021. Federated learning for internet of things: Recent advances,

taxonomy, and open challenges. IEEE Communications Surveys &

Tutorials 23, 3 (2021), 1759–1799.

[25] Jakub Konečnỳ, H Brendan McMahan, Daniel Ramage, and Peter

Richtárik. 2016. Federated optimization: Distributed machine learning

for on-device intelligence. arXiv preprint arXiv:1610.02527 (2016).

[26] Hugo Landaluce, Laura Arjona, Asier Perallos, Francisco Falcone, Ig-

nacio Angulo, and Florian Muralter. 2020. A review of IoT sensing

applications and challenges using RFID and wireless sensor networks.

Sensors 20, 9 (2020), 2495.

[27] Chenglin Li, Di Niu, Bei Jiang, Xiao Zuo, and Jianming Yang. 2021.

Meta-har: Federated representation learning for human activity recog-

nition. In Proceedings of the web conference 2021. 912–922.

[28] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein.

2018. Visualizing the loss landscape of neural nets. Advances in neural

information processing systems 31 (2018).

[29] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet

Talwalkar, and Virginia Smith. 2020. Federated optimization in het-

erogeneous networks. Proceedings of Machine learning and systems 2

(2020), 429–450.

[30] Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua

Zhang. 2019. On the convergence of fedavg on non-iid data. arXiv

preprint arXiv:1907.02189 (2019).

[31] Zhaohua Li, Le Wang, Guangyao Chen, Muhammad Shafq, et al. 2023.

A survey of image gradient inversion against federated learning. Au-

thorea Preprints (2023).

[32] Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang Yuan, Zhao

Song, Anshumali Shrivastava, Ce Zhang, Yuandong Tian, Christopher

Re, et al. 2023. Deja vu: Contextual sparsity for efficient llms at in-

ference time. In International Conference on Machine Learning. PMLR,

22137–22176.

[33] Liangchen Luo, Mark Sandler, Zi Lin, Andrey Zhmoginov, and Andrew

Howard. 2020. Large-scale generative data-free distillation. arXiv

preprint arXiv:2012.05578 (2020).

[34] Yuzhu Mao, Zihao Zhao, Meilin Yang, Le Liang, Yang Liu, Wenbo

Ding, Tian Lan, and Xiao-Ping Zhang. 2023. Safari: Sparsity-enabled



When Device Delays Meet Data Heterogeneity in Federated AIoT Applications ACM MOBICOM ’25, November 4–8, 2025, Hong Kong, China

federated learning with limited and unreliable communications. IEEE

Transactions on Mobile Computing (2023).

[35] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and

Blaise Aguera y Arcas. 2017. Communication-efficient learning of

deep networks from decentralized data. In Artificial intelligence and

statistics. PMLR, 1273–1282.

[36] Elena Mocanu, Decebal Constantin Mocanu, Phuong H Nguyen, An-

tonio Liotta, Michael E Webber, Madeleine Gibescu, and Johannes G

Slootweg. 2018. On-line building energy optimization using deep

reinforcement learning. IEEE transactions on smart grid 10, 4 (2018),

3698–3708.

[37] Mehdi Mohammadi and Ala Al-Fuqaha. 2018. Enabling cognitive smart

cities using big data and machine learning: Approaches and challenges.

IEEE Communications Magazine 56, 2 (2018), 94–101.

[38] Hussein Mouzannar, Yara Rizk, and Mariette Awad. 2018. Damage

Identification in Social Media Posts using Multimodal Deep Learning..

In ISCRAM. Rochester, NY, USA.

[39] Dinh C Nguyen, Ming Ding, Pubudu N Pathirana, Aruna Seneviratne,

Jun Li, and H Vincent Poor. 2021. Federated learning for internet of

things: A comprehensive survey. IEEE Communications Surveys &

Tutorials 23, 3 (2021), 1622–1658.

[40] John Nguyen, Kshitiz Malik, Hongyuan Zhan, Ashkan Yousefpour,

Mike Rabbat, Mani Malek, and Dzmitry Huba. 2022. Federated learning

with buffered asynchronous aggregation. In International Conference

on Artificial Intelligence and Statistics. PMLR, 3581–3607.

[41] Amir M Rahmani, Tuan Nguyen Gia, Behailu Negash, Arman Anzan-

pour, Iman Azimi, Mingzhe Jiang, and Pasi Liljeberg. 2018. Exploiting

smart e-Health gateways at the edge of healthcare Internet-of-Things:

A fog computing approach. Future Generation Computer Systems 78

(2018), 641–658.

[42] Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett,

Keith Rush, Jakub Konečnỳ, Sanjiv Kumar, and H Brendan McMahan.

2020. Adaptive federated optimization. arXiv preprint arXiv:2003.00295

(2020).

[43] Attila Reiss and Didier Stricker. 2012. Introducing a new benchmarked

dataset for activity monitoring. In 2012 16th international symposium

on wearable computers. IEEE, 108–109.

[44] Yichen Ruan, Xiaoxi Zhang, Shu-Che Liang, and Carlee Joe-Wong.

2021. Towards flexible device participation in federated learning. In

International Conference on Artificial Intelligence and Statistics. PMLR,

3403–3411.

[45] Aaqib Saeed, Flora D Salim, Tanir Ozcelebi, and Johan Lukkien. 2020.

Federated self-supervised learning of multisensor representations for

embedded intelligence. IEEE Internet of Things Journal 8, 2 (2020),

1030–1040.

[46] Hiroaki Sakoe and Seibi Chiba. 1978. Dynamic programming algo-

rithm optimization for spoken word recognition. IEEE transactions on

acoustics, speech, and signal processing 26, 1 (1978), 43–49.

[47] Deepti Sehrawat and Nasib Singh Gill. 2019. Smart sensors: Analysis

of different types of IoT sensors. In 2019 3rd International Conference

on Trends in Electronics and Informatics (ICOEI). IEEE, 523–528.

[48] Guomei Shi, Li Li, Jun Wang, Wenyan Chen, Kejiang Ye, and

ChengZhong Xu. 2020. HySync: Hybrid federated learning with ef-

fective synchronization. In 2020 IEEE 22nd International Conference on

High Performance Computing and Communications; IEEE 18th Interna-

tional Conference on Smart City; IEEE 6th International Conference on

Data Science and Systems (HPCC/SmartCity/DSS). IEEE, 628–633.

[49] Jifeng Song, Kai Huang, Xiangyu Yin, Boyuan Yang, andWei Gao. 2024.

Achieving Sparse Activation in Small Language Models. arXiv preprint

arXiv:2406.06562 (2024).

[50] Pu Tian, Weixian Liao, Wei Yu, and Erik Blasch. 2022. WSCC: A

weight-similarity-based client clustering approach for non-IID feder-

ated learning. IEEE Internet of Things Journal 9, 20 (2022), 20243–20256.

[51] Stacey Truex, Ling Liu, Ka-Ho Chow,Mehmet Emre Gursoy, andWenqi

Wei. 2020. LDP-Fed: Federated learning with local differential privacy.

In Proceedings of the third ACM international workshop on edge systems,

analytics and networking. 61–66.

[52] Yonatan Vaizman, Katherine Ellis, and Gert Lanckriet. 2017. Recog-

nizing detailed human context in the wild from smartphones and

smartwatches. IEEE pervasive computing 16, 4 (2017), 62–74.

[53] Qizhao Wang, Qing Li, Kai Wang, Hong Wang, and Peng Zeng. 2021.

Efficient federated learning for fault diagnosis in industrial cloud-edge

computing. Computing 103, 10 (2021), 2319–2337.

[54] Qiyuan Wang, Qianqian Yang, Shibo He, Zhiguo Shi, and Jiming

Chen. 2022. Asyncfeded: Asynchronous federated learning with eu-

clidean distance based adaptive weight aggregation. arXiv preprint

arXiv:2205.13797 (2022).

[55] Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao Hu, and Jian Cheng.

2016. Quantized convolutional neural networks for mobile devices.

In Proceedings of the IEEE conference on computer vision and pattern

recognition. 4820–4828.

[56] Cong Xie, Sanmi Koyejo, and Indranil Gupta. 2019. Asynchronous

federated optimization. arXiv preprint arXiv:1903.03934 (2019).

[57] Ziqi Yang, Jiyi Zhang, Ee-Chien Chang, and Zhenkai Liang. 2019. Neu-

ral network inversion in adversarial setting via background knowledge

alignment. In Proceedings of the 2019 ACM SIGSAC Conference on Com-

puter and Communications Security. 225–240.

[58] Hongxu Yin, Arun Mallya, Arash Vahdat, Jose M Alvarez, Jan Kautz,

and Pavlo Molchanov. 2021. See through gradients: Image batch re-

covery via gradinversion. In Proceedings of the IEEE/CVF conference on

computer vision and pattern recognition. 16337–16346.

[59] Hongxu Yin, Pavlo Molchanov, Jose M Alvarez, Zhizhong Li, Arun

Mallya, Derek Hoiem, Niraj K Jha, and Jan Kautz. 2020. Dreaming to

distill: Data-free knowledge transfer via deepinversion. In Proceedings

of the IEEE/CVF conference on computer vision and pattern recognition.

8715–8724.

[60] Xiangyu Yin, Kai Huang, Erick Forno, Wei Chen, Heng Huang, and

Wei Gao. 2023. PTEase: Objective Airway Examination for Pulmonary

Telemedicine using Commodity Smartphones. In Proceedings of the

21st Annual International Conference on Mobile Systems, Applications

and Services. 110–123.

[61] Jing Zhang and Dacheng Tao. 2020. Empowering things with intel-

ligence: a survey of the progress, challenges, and opportunities in

artificial intelligence of things. IEEE Internet of Things Journal 8, 10

(2020), 7789–7817.

[62] Rui Zhang, Song Guo, Junxiao Wang, Xin Xie, and Dacheng Tao. 2022.

A survey on gradient inversion: Attacks, defenses and future directions.

arXiv preprint arXiv:2206.07284 (2022).

[63] Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. 2020. idlg: Improved

deep leakage from gradients. arXiv preprint arXiv:2001.02610 (2020).

[64] Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and

Vikas Chandra. 2018. Federated learning with non-iid data. arXiv

preprint arXiv:1806.00582 (2018).

[65] Shuxin Zheng, Qi Meng, Taifeng Wang, Wei Chen, Nenghai Yu, Zhi-

Ming Ma, and Tie-Yan Liu. 2017. Asynchronous stochastic gradient

descent with delay compensation. In International conference on ma-

chine learning. PMLR, 4120–4129.

[66] Chendi Zhou, Hao Tian, Hong Zhang, Jin Zhang, Mianxiong Dong,

and Juncheng Jia. 2021. TEA-fed: time-efficient asynchronous fed-

erated learning for edge computing. In Proceedings of the 18th ACM

International Conference on Computing Frontiers. 30–37.



ACM MOBICOM ’25, November 4–8, 2025, Hong Kong, China Haoming Wang and Wei Gao

[67] Yuhao Zhou, Qing Ye, and Jiancheng Lv. 2021. Communication-efficient

federated learning with compensated overlap-fedavg. IEEE Transac-

tions on Parallel and Distributed Systems 33, 1 (2021), 192–205.

[68] Ligeng Zhu, Zhijian Liu, and Song Han. 2019. Deep leakage from

gradients. Advances in neural information processing systems 32 (2019).

[69] Xudong Zhu, Hui Li, and Yang Yu. 2019. Blockchain-based privacy

preserving deep learning. In Information Security and Cryptology: 14th

International Conference, Inscrypt 2018, Fuzhou, China, December 14-17,

2018, Revised Selected Papers 14. Springer, 370–383.

[70] Zhuangdi Zhu, Junyuan Hong, and Jiayu Zhou. 2021. Data-free knowl-

edge distillation for heterogeneous federated learning. In International

conference on machine learning. PMLR, 12878–12889.


