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Abstract

Federated AloT uses distributed data on IoT devices to train
Al models. However, in practical AloT systems, heteroge-
neous devices cause data heterogeneity and varying amounts
of device staleness, which can reduce model performance
or increase federated training time. When addressing the
impact of device delays, existing FL frameworks improperly
consider it as independent from data heterogeneity. In this
paper, we explore a scenario where device delays and data
heterogeneity are closely correlated, and propose FedDC, a
new technique to mitigate the impact of device delays in
such cases. Our basic idea is to use gradient inversion to
learn knowledge about device’s local data distribution and
use such knowledge to compensate the impact of device
delays on devices’ model updates. Experiment results on het-
erogeneous IoT devices show that FedDC can improve the
FL performance by 34% with high amounts of device delays,
without impairing the devices’ local data privacy.
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1 Introduction

The Artificial Intelligence of Things (AloT) [2, 20, 61] per-
ceive the heterogeneous data produced by IoT devices using
Al models, enabling many intelligent applications including
smart health [7, 41, 60], autonomous driving (3, 11, 21] and
smart cities [36, 37]. Since data in AloT applications is gen-
erated at distributed sources but cannot be processed at a
central server due to large sizes [22] and privacy concerns
[69], Federated Learning (FL) [35] is usually used to train Al
models [18, 24]. In FL, each IoT device receives the global
model from the server and trains the model using local data,
and trained model updates are transmitted to and aggregated
at the server to update the global model. This procedure it-
eratively repeats until the global model converges.

FL in AloT faces two major challenges, namely data hetero-
geneity and device delays. Data heterogeneity exists as data
on different IoT devices is not independent and identically
Distributed (i.i.d.) due to diverse user behaviors or environ-
mental contexts [19, 27], and leads to biased model updates
from devices that degrades the global model’s performance
[23, 30, 64]. Device delays, on the other hand, refer to the
extra time for the server to receive the model update from
a slow IoT device, and can be caused by various reasons in
AloT, such as device’s insufficient compute power, exces-
sive amounts of local compute workloads, and disruptions in
communication between devices and the server. Such delays
could cause significant slowdown of FL training [25, 44].

Current FL frameworks use different ways to tackle device
delays. For example, conventional synchronous FL discards
delayed model updates if the delay is too long [29], and asyn-
chronous FL [9, 56] applies lower weights to delayed model
updates at server’s aggregation [10, 64]. However, most ap-
proaches consider device delays as independent from data
heterogeneity, and they cannot be applied to many AloT
applications where device delays and data heterogeneity are
closely correlated, i.e., data of a certain class or with specific
features may only be available on some slow devices. For
example, as shown in Figure 1, in human activity recognition
(HAR) [45, 52], users doing certain outdoor activities (e.g.,
hiking, field repairs, etc) may always have limited network
connectivity during these activities, and model updates re-
garding these activities will always be delayed. Similar cases
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Figure 1: Federated AloT applications where device
delays and data heterogeneity are correlated

are also found in hazard rescue operations [1] and indus-
trial manufacturing sites, where IoT devices operate in harsh
conditions [4]. In these applications, discarding the delayed
model updates or reducing their contributions at server’s
aggregation will exclude knowledge about unique data from
the global model, resulting in significant model bias.

Instead, knowledge in delayed model updates should be
fully aggregated into the global model. To do this without
affecting FL performance, as shown in Figure 2, a better
solution is to estimate and compensate the impact of device
delays on these updates before aggregation. Since the model
update at an IoT device is computed by training the global
model with device’s local data, when device delay is small
(e.g., within one FL epoch), we can estimate the impact of
device delays by applying Taylor expansion on the gradient
of delayed model update and use its first-order term as the
estimator [65]. However, device delays in AloT could usually
be large or even unbounded [67], especially in many adverse
application contexts as shown in Figure 1. In these cases, the
error of such estimation will be significantly enlarged.

To accurately estimate and compensate the impact of un-
bounded device delay in AloT, knowledge about the slow IoT
device’s local data must be sufficiently exploited. Based on
this vision, in this paper we present Delay Compensator in
FL (FedDC), a new FL technique that uses gradient inversion
[68] to learn knowledge about the slow device’s local data
distribution and further use such knowledge at the server to
mimic the slow device’s local training with the global model.
In this way, since the device’s local training procedure in
FL is independent from the device delay, our approach can
ensure accurate estimation on the impact of device delay in
any amount. In practice, the error of such compensation will
gradually increase as FL training progresses, and we adap-
tively decide when to end such compensation and switch
back to vanilla FL according to the specific training progress.
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Figure 2: Delayed model updates will be compensated
and then aggregated to the global model. The devices’
local operations include local training and transmis-
sion of the trained model update to the server.

To our best knowledge, our work is the first that focuses on
the correlation between device delays and data heterogeneity
in FL, which is critical to federated AIoT applications. In
particular, our approach has the following advantages:

e FedDC retains the local training procedure at IoT de-
vices in FL to be completely unchanged, but executes
all extra computations at the FL server. It hence does
not incur any additional computation or communica-
tion overhead at IoT devices.

e FedDC does not require any auxiliary dataset nor the
IoT devices’ local models to be fully trained, and can
hence be applied to any stage of the FL procedure.

e In FedDC, the server is unable to recover any original
samples or labels of IoT devices’ local data, and hence
completely avoids impairing the devices’ data privacy.

We implemented FedDC on multiple types of IoT devices
including different models of smartphones, Raspberry Pi 4B
and NVidia Jetson Nano, and evaluated its performance on 3
real-world AloT datasets. From our experiment results, we
have the following conclusions:

e FedDC is accurate. Compared with the baselines [8, 10,
15, 35, 65], it can improve the trained model’s accuracy
by up to 34%, even with high amounts of correlated
device delays and data heterogeneity.

e FedDC is adaptive. It exhibits significant improvements
of FL performance with different AIoT datasets, neural
network models and experiment settings.

e FedDC is lightweight. It incurs the minimum amount
of extra computations at the server, which does not
result in any delay on FL training.

2 Background and Motivation

In this section, we first demonstrate the FL performance
drop in AloT when device delays meet data heterogeneity,
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Figure 3: FL performance when device delays are correlated with data heterogeneity

and experimentally verify the ineffectiveness of existing ap-
proaches to tackling such FL performance drop. Such inef-
fectiveness, then, motivates us to instead learn knowledge
about slow IoT device’s local data by leveraging gradient
inversion, to ensure that such unique knowledge can be fully
incorporated into the global model.

2.1 FL Performance when Device Delays
meet Data Heterogeneity

Both device delays and data heterogeneity affect FL perfor-
mance in AloT. However, when they are correlated, device
delays will only affect specific data classes that are uniquely
available on slow devices, as shown in Figure 1, and the
global model’s accuracy degradation in these classes will be
more significant. To demonstrate this, we conducted prelim-
inary experiments on 13 IoT devices that use FL to train a
3-layer MLP classification model on the PAMAP2 dataset
[43], which contains 13 classes of human activities. FedAvg
[35] is used for server’s aggregation. This dataset naturally
incorporates data heterogeneity, such that each device should
only contain data in one class [43]. When data heterogeneity
is uncorrelated with device delays, in each FL training epoch
we randomly select one device to apply a delay of 10 epochs.
Otherwise when data heterogeneity is correlated to device
delays, we randomly select one data class and assign delays
only to devices with data samples in that class. Results in
Figure 3(a) show that, in this case, the accuracy on selected
data class significantly drops, motivating the need of well
designed techniques to address such model accuracy drop.
The most commonly used technique is to reduce the weights
of delayed model updates in aggregation [10, 29, 64] . How-
ever, when device delays are correlated to data heterogeneity,
although using lower weights on delayed model updates re-
duces the errors applied on the global model, it also prevents
the unique knowledge contained in these updates from being
sufficiently aggregated to the global model, leading to fur-
ther model accuracy drop as shown in Figure 3(b). Reversely,

if higher weights are applied to delayed model updates, it
improves the model accuracy in the data classes affected by
device delays, but also amplifies the error in the global model
and hence reduces the overall model accuracy in other data
classes. For example, in our experiments, the overall clas-
sification accuracy over the 13 classes of human activities
dropped from 68.6% to 65.2%.

These results show that modifying weights on delayed
model updates cannot address correlated device delays and
data heterogeneity. Instead, a better solution is to estimate
and compensate the impact caused by device delays on model
updates. The existing method of estimation is to apply Taylor
expansion on the gradient of delayed model update, and to
use its first-order term as the estimator by assuming the
device delay is always sufficiently small [15, 65]. For a model
update g(w;_.) at time t where 7 is the amount of device
delay and w;_, indicates the global model used to compute
the update, the compensated update is calculated as

g(we) ~ g(wi—7) + Vg(wi_z) (we — we—z), (1)
and the Hessian matrix Vg(w;_;) is approximated as
Vg(wi-r) % - g(wi-7) © g(wi—r) (2)

where © means element-wise multiplication and A is a hyper-
parameter. However, the error of such first-order compensa-
tion, i.e., the high-order terms in Taylor expansion, increases
with the amount of device delay (7). To verify this, we use
the same experiment settings as above, and results in Figure
3(c) show that when we use the compensated model update
in aggregation, the discrepancy caused in the global model
significantly enlarges when device delay grows. These re-
sults motivate designing a better method that compensates
the impact caused by device delays of any amount.

2.2 Gradient inversion

Our proposed approach leverages gradient inversion [68],
which was designed to learn knowledge about the training
data from the gradient of a trained model, by minimizing
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Figure 4: Overview of FedDC design

the difference between the trained model’s gradient and the
gradient computed from the estimated data. More specifically,
it solves the following optimization problem:
ALI(x',y); w' 1]
— ®)
where x” and ¢’ indicate the estimated training data samples
and data labels, respectively, w’~! is the trained model, L[-]
is model’s loss function, and ¢’ is the gradient calculated
with the training data and w’~!. This problem can be solved
using gradient descent to iteratively update (x’,y’).

The effectiveness of such learning is directly related to the
volume of training data, and is usually limited to estimating
a small number of training data samples [13, 63, 68]. The
quality of estimated data is sensitive to extra disturbances
applied to the model’s gradient, such as sparsification and
random noise [68]. These limitations of gradient inversion
motivate us to seek better ways of learning the knowledge
about slow IoT devices’ local data, but also highlight the
possibility of preventing such learning from impairing the
devices’ local data privacy.

(x,y"") = argmin(y ) || — gt||§,

3 Overview

As shown in Figure 4, the primary rationale of FedDC design
is to keep the IoT device’s local FL procedure completely un-
changed to avoid any extra communication and computation
overhead, but to compensate the impact of device delays at
the server. Upon receiving a delayed model update from a
device, since this update was calculated at the device using
an outdated global model, the server correspondingly caches
the outdated global model from previous epochs, and uses
this outdated global model to learn knowledge about the
device’s local data via gradient inversion. Such knowledge
is then used to compensate the error in the model update
due to device delays, and the compensated model update is
aggregated into the current global model.

3.1 Compensating Device Delays

We consider a semi-asynchronous FL scenario where some
normal IoT devices are not affected by device delays and
follow synchronous FL, and some other slow devices send

model updates asynchronously [8]: at time ¢, the server re-
ceives a model update that is delayed by 7:

Di)’ (4)

which is computed by device i using its local data D; to train
an outdated global model W;l:fbal' If the device delay does

not exist, the corresponding model update should be

Dy).

wf_f = LocalUpdate(wgtl_O’l;al;

©)

The primary objective of FedDC, hence, is to estimate and
compensate the impact of device delays caused in w! ™7, by
approximating w!. Our primary approach is that the server
applies gradient inversion described in Eq. (3) on w; ™7, to
learn an intermediate dataset D, that approximates the
device i’s local data D;, and then use D,; to retrain the
server’s current global model (w; Jobay)- 111 this way, we expect

wi = LOCGlUpdate(W;lobal;

that the outcome of such retraining can approximate w;.
Specifically, we randomly initialize each data sample and
label in D, and then iteratively update D,s; by minimizing

Dist[LocalUpdate(w'; " s Dest), wi 7], (6)

global’
using gradient descent, where Dist[-] is a metric to evaluate
how much wf" changes if retrained using D,s. In FL, a
client’s model update comprises multiple local training steps
instead of a single gradient. Hence, to use gradient inversion,
we substitute the single gradient computed from D,g; in Eq.
(3) with the outcome of the device’s local training using D,;.

To decide the appropriate choice of the metric Dist[-], we
evaluate the global model’s accuracy when using different
metrics in Eq. (6), with the same experiment setting as de-
scribed in Section 2.1. As shown in Figure 5, using L1-norm
metric provides the most reliable performance, while using
either L2-norm or cosine distance metric result in signifi-
cance FL performance drop or instability in training. The
basic reason is that using L1-norm metric ensures unbiased
sampling in gradient inversion, and we will use L1-norm as
the choice of metric in the rest of this paper.

However, according to [31, 62], it is difficult for gradient
inversion to precisely reconstruct individual samples of the
training data. Instead, in FedDC we ensure that the estimated
D.s: provides accurate knowledge about the device’s local
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data distribution. In Section 4.1, we will further show that,
with such knowledge about data distribution, FedDC can
still ensure close approximation to w;.

FedDC’s capability of such approximation is also related
to the size of D, which decides both the converging loss
and computing cost of gradient inversion. In Section 4.2, we
provide more details about how to balance between these
two aspects by deciding the proper size of Dey;.

Furthermore, the effectiveness of FedDC’s approximation
on improving the global model’s accuracy will diminish, as
the FL training progresses and the global model’s change
over different training epochs becomes smaller. As a result,
the approximation approach in FedDC would result in larger
error in the late stage of FL training, and we need to adap-
tively switch back to vanilla FL as needed. More details of
such switch are in Section 4.3.

5000

w

N
&

~
S o &

8000

4000

)
S

Time per k iterations/s

6000

o

3000

i
&

4000
2000

i
°

._.
s
Time per k iterations/s

1000 2000

@

o
o
o u

0

n x
<

x 0 x x
= @ « i

o o
2 2
o ~ N ~
Device data size Device data size

(a) PAMAP?2 [43] (b) ExtraSensory [52]

Figure 6: Iterations and time needed for gradient in-
version with different AloT datasets

3.2 Reducing the Computation Overhead

Gradient inversion is known to be computationally expen-
sive, due to its iterative optimizations as specified in Eq. (3).
As shown in Figure 6, for different AloT datasets, we will
need at lead 2,000 iterations for the loss of gradient inversion
to converge, and the time needed for each iteration ranges
between 7.4ms and 31.6ms depending on the size of D,
when running on a NVidia A5000 GPU with 24GB memory.
With Such high computing overhead, hence, will become a
major burden for the FL server.

To reduce such computation overhead, our approach is to
reduce the complexity of optimization objective in Eq. (3)
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via sparsification. Existing studies showed that model up-
dates in FL are highly sparse [17, 34], and FL performance is
mainly determined by <5% of the largest gradients in model
updates. Hence, gradient inversion only needs to perform
on these gradients with high magnitudes, leading to signifi-
cant overhead reduction without affecting the accuracy of
approximation. Further, we also reduce the scope to which
gradient inversion is applied, based on the difference of delay
compensation in different FL training epochs. More details
of such reduction of computation overhead are in Section 5.

Accelerometer

Time stamp Time stamp Time stamp

(a) Original IMU data (b) Estimated 100 samples (c) Estimated 1 sample

Figure 7: Examples of comparing the IMU data esti-
mated by using gradient inversion with the original
IMU data in the ExtraSensory dataset [52]

3.3 Protecting IoT Devices’ Data Privacy

One major concern of using gradient inversion for delay
compensation in FL is the possible leakage of IoT devices’
local data privacy, as FedDC uses gradient inversion to learn
knowledge about devices’ local data. To verify this risk, we
checked the time-series data samples in D, that gradient
inversion estimated from the ExtraSensory dataset [52].
Results in Figure 7(b), as an example, show that in a typical FL
setting where each IoT device has a large volume of local data
samples, it is hard to correlate the estimated data samples in
D, with these many samples in the original data. However,
in another setting shown in Figure 7(c) where data on each
10T device only contains few data samples, these samples
can be precisely recovered by gradient inversion.

To eliminate such risk of privacy leakage, we adopt the
similar sparsification techniques to mitigate the capability
of gradient inversion on recovering the IoT device’s original
data samples. Our results in Section 6 show that, even in the
most challenging setting, we can prevent the data samples
estimated by gradient inversion from being recognizable by
both human eyes and a neural network classifier.

4 Approximating Model Updates without
Device Delays

In this section, we provide more details about FedDC’s ap-
proach to learning the intermediate dataset D,s; and using
D, to approximate model updates without device delays.

'We noted that in most AloT applications, the data produced at IoT devices
exhibits as time series. Typical examples of such data include humans’ body
motion, location, heart rate and surrounding environmental conditions, as
contained in the PAMAP2 [43] and ExtraSensory [52] datasets.
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4.1 Towards Accurate Approximation

We first validate that the loss surface in model’s weight space,
when computed using D,;, can closely resemble that com-
puted using D;, thereby enabling the computation of a similar
gradient. More specifically, we visualize the loss surface by
projecting it onto a 2D space, as described in [28]. The re-
sults in Figure 8, with a 3-layer MLP model being trained
on the PAMAP2 dataset [43], indicate that the loss surface
computed using D,;; closely mirrors that obtained using D;

on the current global model w! , and such difference is
global

as small as 0.05 when measured as the cosine distance.

Using the raw training data

4

Using the D,

4

@ The current global model weights

Using random noise

== Gradient direction
Figure 8: Visualization of the loss surface

Based on such similarity, when we use D,; to approximate
w! as described in Eq. (6), we compare its approximation er-
ror with the first-order compensation [15, 65] described in
Eq. (1), by measuring the difference between the approxi-
mated w! and the corresponding ground truth without de-
vice delays. With that same experiment settings as described
above, results in Figure 9 show that FedDC slightly outper-
forms first-order compensation when the device delay is
small. However, as the delay increases, FedDC achieves sig-
nificantly lower errors. Notably, when the device delay is 20
epochs, FedDC reduces the estimation error by 40%.
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Figure 9: Comparing the approximation error of FedDC
with that of first-order compensation [15, 65], mea-
sured in cosine distance

4.2 Deciding the size of D,

Gradient inversion is equivalent to data resampling from
the 10T device’s local data distribution. Hence, a sufficiently
large D, is necessary to ensure unbiased data sampling and
minimize the loss of gradient inversion. However, if D,s;
is too large, the computational time per iteration becomes
unnecessarily high.

Haoming Wang and Wei Gao

The intuitive solution is to let D,s; be as large as the IoT
device’s local training data D; [58]. However, in AloT appli-
cations, devices’ local data is usually produced continuously
at high frequencies [26, 47], resulting in large volumes of
data but high similarity between consecutive data samples.
Such similarity enables opportunities to reduce the size of
D, without affecting the convergence of gradient inversion.
We further investigated such opportunities with a 3-layer
MLP model and the PAMAP?2 dataset [43]. As shown in Table
1, when the size of D,; is 1/16 of that of D;, we can effec-
tively minimize the loss of gradient inversion at convergence,
without incurring extra computation overhead. Further in-
creasing the size of Deg; results in very small reduction of
the loss but significantly increases the computing overhead.

| Size [J1128[1/64[1/32[1/16] 1/4 [ 12 ] 1 |

Time (s) 5.3 9 27 62 | 119 | 208 | 391
GI loss 8.7 4.4 | 055|039 037 037|036

Table 1: The converging loss and computing cost of
gradient inversion (GI) with different sizes of D, ;, mea-
sured as the ratio of the IoT device’s local data size

4.3 Adaptively Switch back to Vanilla FL

As shown in Table 1, even with a large D, the loss of
gradient inversion at convergence can never be reduced to
zero, meaning that the approximation in FedDC can never be
100% accurate but will always contain errors. On the other
hand, as the FL training progresses and the global model
converges, the difference between the current and outdated
global models reduces, eventually to zero. This implies that
in the late stage of FL training, FedDC’s approximation and
compensation to device delays would result in more errors
to the global model, as shown by our experiment results in
Figure 10 using the same settings as above.
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Figure 10: FedDC’s error of approximation at different
stages of FL training

In this case, FedDC should adaptively switch back to vanilla
FL in the late stage of FL training. The major challenge of
deciding when to switch is that at any time ¢ in FL training,
as long as the device delay is still present, the ground truth
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of the model update unaffected by device delay (i.e., w!) is
unknown, and it is hence difficult for the server to estimate
the current approximation error of FedDC. To address this
challenge, we observe that, according to Eq. (5), w;' is cal-
culated by device i using the current global model w; Jobal®
and hence it will arrive at the server at a later time, namely
t + ¢’. Therefore, we can empirically decide to switch at time
t + 7/, if by then we find that using FedDC’s approximation
to w; results in more errors compared to using the actually
received wj. Details of such switching are in Algorithm 1.

Algorithm 1 Decision on whether to switch

1: initialize Switch < False
2: for each global epoch t + 7’ do
3 if having ground truth (w!) of the previous estima-
tion (w!) then
if Switch = False then
retrieve previous estimations wl.t R wl? -
EFedDC(t) — DiSt("A‘}it’ Wlt)

4

5 T
6

7 Evannila(t) — DiSt(Wt_T’ W,t)

8

9

i
if EFedDC(t) > Evannila(t) then
Switch <« True

10: if Switch = True then

11 Compensate for delayed updates in this epoch
12: else
13: Directly aggregate the delayed updates

5 Compute Efficiency at FL Server
5.1 Sparsification in Gradient Inversion

To reduce the computation overhead caused by gradient
inversion on the FL server, our primary approach is gradient
sparsification that only involves the important gradients
with large magnitudes into gradient inversion. As shown
in Figure 11, by only involving the top 5% of gradients, we
can reduce 55% of iterations in gradient inversion, with only
slight increase in the error of approximating model updates
without device delay. Further increasing the sparisification
rate to 99%, on the other hand, will lead to significant increase
of the approximation error.
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Figure 11: Computation reduction and approximation
error under different rates of sparsification
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5.2 Selective Computation

Another possibility to further reduce the computation over-
head is to apply gradient inversion in a limited scope of
compensating model updates. First, if the local data on IoT
devices only exhibit small changes over different FL epochs,
we do not need to estimate D,g; every time from scratch,
but can instead initialize D,s; with the results in previous
epochs, hence reducing the number of iterations required
for gradient inversion. As shown in Figure 12, if the devices’
local data is completely unchanged, we can further reduce
the number of iterations by 91%. Even if the devices’ local
data changes by 50%, the extra reduction can still be 82%.

& o ©
o o o

Iterations reduction(%)
N
o

o

o
— ~N n ~

100

Percentage of changed data(%)

Figure 12: The number of iterations reduced by initial-
izing D.; with the results in previous epochs

Similarly, when the IoT device’s local data exhibits small
changes over time, the delayed model updates received from
the same IoT device in different training epochs could also
overlap and share much knowledge in common. In this case,
we only need to compensate the delayed model updates that
contain unique knowledge. We define such uniqueness using
the difference in updates’ gradient direction with others and
quantify it via cosine distance, such that

De(wi,wi') = 1=wi - w/(lw |- [lwlD, (D)

where wit "and wit * are both vectorized to compute their inner
products and norms. We set the threshold of selective com-
putation as the average of such difference between model
updates at different IoT devices. Since the scale of cosine dis-
tance could change during FL training [50], such averaging
can add some adaptivity to the threshold.

6 Privacy Protection

Existing work proved that sparsification can reduce the gra-
dient inversion’s capability of estimating the training data
from a trained model [68], and we showed in Section 5.1
that sparsification causes only negligible impact on error
compensation. Hence, in FedDC we will also exploit such
sparsification to prevent the IoT device’s local data samples
from being precisely estimated by gradient inversion.

As shown in Figure 7, gradient inversion’s capability of
data estimation largely depends the size of training data
being estimated. To ensure sufficient power of privacy pro-
tection, we still focus on the most challenging setting show



ACM MOBICOM ’25, November 4-8, 2025, Hong Kong, China

Acc Magnitude
Acc Magnitude

0 5 10 20 2 30 0 5 10

15 25 30
Time stamp

15 2
Time stamp

(a) Original data (b) 0% sparsification

Acc Magnitude

28 8 2 8 8 B &
Acc Magnitude

| |

5 0 15 20 25 30
Time stamp

5 10 20 25 30

15
Time stamp

(c) 40% sparsification (d) 95% sparsification

Figure 13: IMU data estimated with different sparsifi-
cation rates, on ExtraSensory dataset [52]
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Figure 14: Heart rate data (normalized) estimated with
different sparsification rates, on PAMAP2 dataset [43]

in Figure 7(c) where device’s local data contains only one
data sample, which is the sole target for gradient inversion to
estimate. Figures 13 and 14, then, show the effectiveness of
different sparsification rates on reducing gradient inversion’s
capability of data estimation. A sparsification rate of 40% can
produce noticeable disturbances in the estimated data, and
when the sparsification rate is 95%, the estimated data looks
completely different from the original data samples.

To quantitatively verify such privacy protection, we calcu-
late the similarity between estimated and raw data samples,
using different metrics including mean square error (MSE)
and dynamic time warping (DTW) distance [46]. As shown
in Table 2, with a 95% sparsification rate, the estimated data
is more like random noise than the original data.

Haoming Wang and Wei Gao

Metric Dataset 0% 40% 95% Noise

MSE | PAMAP2 le-4 0.08 0.33 0.38
ExtraSensory 1le-5 0.04 0.34 042

DTW | PAMAP2 0.07 0.5 1.03 1.14

ExtraSensory 0.02 0.18 2.1 2.25

Table 2: The similarity between the estimated data and
raw data samples, with different sparsification rates

We also used the PAMAP2 dataset to train a MLP model,
which is then used to classify the data samples estimated by
gradient inversion. Results in Figure 15 show that using a
sparsification rate of 95% could effectively make the model’s
classification results to be nearly random guesses?. Note that,
since the PAMAP2 dataset we used is a relatively easy one for
the HAR classification task, using a simple neural network
classifier can achieve good accuracy as shown by the existing
work [16]. Therefore, we consider a simple MLP model as
capable of recognizing patterns in the data and sufficient for
evaluating our approach’s capability of privacy protection.

In addition, our proposed gradient sparsification is also
compatible with other privacy protection methods, such as
local differential privacy (LDP) [51]. More specifically, when
LDP is applied, gradient inversion will not aim to recover the
original data distribution of clients, but instead to estimate a
data distribution that can produce the noisy gradient. Such
recovered distribution is then used to compute the noisy
gradient on the current global model.
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Figure 15: Classification accuracy of estimated data

7 Implementation

As shown in Figure 16, we implement FedDC on 10 IoT
devices, including: i) 6 smartphones of different models (Pixel
XL, Pixel 2, Pixel 4, Pixel 5, Pixel 7, LG-G5) with different
hardware configurations and compute power; ii) 2 Raspberry
Pi 4B with a 1.5GHz Cortex-A72 CPU and 4GB memory; and
iii) 2 NVidia Jetson Nano with a 128-core Maxwell GPU and

2Since the PAMAP?2 dataset contains 13 data classes, the classification result
is a random guess when the accuracy drops to 7.7%.
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Figure 16: Devices used in experiments

4GB memory. A workstation with a NVidia RTX A5000 GPU
is used as server, which communicates with devices via WiFi.
Our implementation builds on the Flower FL framework
[6]. Since FedDC retains the IoT devices’ local FL training pro-
cedure completely unchanged, we adopt the original client
FL program provided by Flower, such that each device in
every global epoch computes its update using the SGD opti-
mizer with a learning rate of 0.01 and a momentum of 0.5. We
modify the aggregation program at the FL server to add the
proposed approaches of device delay compensation using
gradient inversion, and the server ends a global epoch when
70% of devices have finished uploading their model updates.
To maximize the compute efficiency at FL server and
minize the time needed for aggregation, we parallelized the
process of gradient inversion on the FL server and the FL
training on IoT devices. As shown in Figure 17. the server
first aggregates all the model updates from IoT devices that
are not affected by device delays and initiates a new global
epoch. Then, the server computes gradient inversion for
other delayed model updates for the previous epoch, while
the 10T devices compute their model updates for the new
epoch. Once the gradient inversion at the server completes,
the compensated model updates (from the previous epoch)
can be aggregated into the global model in the new epoch.

Next epoch begins

Local training

loT
device
Model updates Delayed
without delay updates
FLserver - . . ,,,,,,
Aggre Gradient Aggre
Inversion

Figure 17: Parallelization of computations

8 Performance Evaluation

We evaluate the performance of FedDC over multiple AloT
datasets in different federated application domains, including
human activity recognition (HAR) and hazard site surveil-
lance, in both of which device delays and data heterogeneity
are closely correlated.
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e PAMAP?2 [43] with 13 classes of human activities and
>2M data samples collected using IMU and heart rate
sensors. A 3-layer MLP model is used in FL.

e ExtraSensory [52] with over 300k data samples col-
lected using IMU, gyroscope and magnetometer sen-
sors on smartphones. Besides 7 main labels of activities
(e.g., standing, laying down, etc), it also provides 109
additional labels describing more specific activity con-
texts. An 1D-CNN model is used in FL.

e MDI [38] with 6,000 images about 6 classes of natural
disasters. A pre-trained ResNet18 model is used in FL.

We compare FedDC’s performance in classification task
with the following baselines that tackle devices delays in FL:
e Unweighted aggregation (Unweighted): Aggregat-
ing delayed model updates without applying weights.

e Weighted aggregation (Weighted): Aggregating de-
layed model updates with weights that are inversely
proportional to the amount of device delays [10].

e FL with asynchronous tiers (Asyn-Tiers): It clus-
ters devices into asynchronous tiers based on device
delays and uses synchronous FL in each tier [8].

o First-order compensation (1st-Order): It applies
Taylor expansion on the gradient of delayed model
update and uses its first-order term as estimator [65].

e Future global weights prediction (W-Pred): As-
suming delays as pre-known, the future global model
is predicted by first-order method above and used to
estimate model updates without delays [15].
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Figure 18: Distribution of data samples’ classes over
time, from one subject in the PAMAP2 dataset

8.1 Experiment Settings

In all experiments, FedAvg [35] is used for aggregating model
updates. Hence, Unweighted aggregation is FedAvg with
delays, and Weighted aggregation applies extra weights to
model updates in FedAvg 1st-Order, W-pred, and FedDC
further modify such weights for compensation, and Asyn-
Tiers separately uses FedAvg in each tier. Note that the usage
of FedAvg is independent from FedDC and other baselines,
and can be replaced by other FL frameworks such as FedProx
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Figure 19: FL training procedure with different amounts of delays on the PAMAP2 dataset

[29]. For Weighted aggregation, we set the weights following
[48] as 1/(1 + e?("=?)) where 7 is the amount of delays in
global epochs and we set a=0.25 and b=10. For Asyn-Tiers,
we set 3 asynchronous tiers that are also weighted by the
number of devices in different tiers [8].
Data heterogeneity. We enforce different levels of data
heterogeneity by partitioning the dataset to IoT devices in
different ways. First, in most AloT datasets, data samples
collected from a subject within a short time window will fall
into the same class, as exemplified in Figure 18. Hence, being
different from existing FL studies which set data heterogene-
ity using a Dirichlet distribution to sample client datasets
[70], we emulate high data heterogeneity using a short time
window, during which an IoT device only has data in one
class. Similarly, low data heterogeneity is emulated over a
long time window, during which data samples in different
classes are continuously added to IoT devices.
Device delays. For each dataset, we randomly select three
data classes that will be affected by low, medium and high
amounts of device delays, respectively. In each FL training
epoch, the specific device delays are sampled from a Gamma
distribution: for high delays, its mean value is set to 10X
of the average time of a global epoch. The mean values for
medium and low delays are set as 5x and 2X, respectively.
With the parallelization approach described in Section 7,
the duration of a global epoch in AloT is mainly determined
by the IoT devices’ local training, which is usually slow due

to the devices’ limited local computing power. On the de-
vices we used in evaluations, the average durations for local
training with the three datasets are 28.1s (PAMAP2), 55.6s
(ExtraSensory), and 23.7s (MDI), respectively. Note that, such
durations are decided by the weakest client in the FL system.

8.2 FL Performance with Different
Amounts of Device Delays

We first evaluate the FL model’s accuracy in data classes af-
fected by different amounts of device delays. Given that the
accuracy across different data classes in a dataset could sig-
nificantly vary, even for the same method, we report model
accuracy on data classes affected by delay as the relative im-
provement compared to unweighted aggregation, to clearly
show the performance differences among different methods.
Besides, we also report the overall performance on the entire
dataset, as the absolute percentage of classification accuracy.
Our method only adds extra computations of gradient inver-
sion on the server, and the communication cost between the
server and clients remains the same as that in conventional
FL. Hence, we do not report the communication cost in the
evaluations of this paper.

As shown in Table 3, when the amount of device delays is
low, FedDC results in slight degradation in FL performance
because the error in delay compensation outweighs the er-
ror caused by delayed model updates. However, when the
amount of device delays increases, the delay compensation in

PAMAP2 / MLP ExtraSensory / 1D-CNN MDI/ 2D-CNN

Delay low ‘ medium ‘ high ‘ overall | low ‘ medium ‘ high ‘ overall | low ‘ medium ‘ high ‘ overall
Unweighted || 0.0% 0.0% 0.0% 69.9% 0.0% 0.0% 0.0% 48.7% 0.0% 0.0% 0.0% 76.5%
Weighted -5.4% | -13.9% | -43.5% | 68.9% | -18.4% | -46.5% | -62.3% | 47.5% | -3.7% | -141% | -23.3% | 76.3%
Asyn-tiers || +0.7% | +0.4% -0.5% | 69.9% -2.0% +0.8% -29% | 489% | -1.3% | +1.8% 0.0% 76.5%
1st-Order +23% | +1.5% +0.6% | 70.01% || +3.6% +2.5% -2.2% | 493% || -0.5% | +1.7% +0.7% | 76.9%
W-Pred +2.6% | +1.3% +0.6% | 70.0% || +0.4% +1.5% -1.3% | 49.6% || -0.2% | +1.7% +0.4% | 76.8%

[ FedDC [ -1.9% [ +54% [+123% | 70.6% [ -3.0% | +16.9% | +34.2% | 50.3% [ -1.2% | +4.1% | +7.7% | 76.8%

Table 3: The trained model’s accuracy in data classes affected by device delays, with different amounts of device
delays. Accuracy is shown as the relative improvement compared to unweighted aggregation.
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Figure 20: FL performance with different levels of data heterogeneity

FedDC can significantly improve FL performance compared
to baselines. In particular, with a high amount of device delay,
FedDC outperforms the best baseline (W-Pred) by 35.5% on
ExtraSensory dataset and 11.7% on PAMAP2 dataset. Note
that the average classification accuracy on ExtraSensory
dataset is around 50% and the lowest among three datasets.
This means that FedDC can achieve the most performance
improvement in challenging federated AloT scenarios.

Meanwhile, Table 3 showed that the average accuracy
over all classes in FedDC remain nearly the same with slight
improvement. Since device delays in our experiment settings
only affect 3 data classes which constitute only a small por-
tion of the entire dataset as described in Section 8.1, these
results show that FedDC’s delay compensation did not affect
the FL performance in other data classes.

Results in Figure 19 further show that, besides achieving
higher accuracy in the trained model, FedDC also improves
the quality and stability of training, especially with high
amounts of device delays.

4 Percentage of data samples -
100% Group 1
Group 2
Time
0%

Figure 21: Variant distribution of global data over time

8.3 FL Performance with Different Levels of
Data Heterogeneity

We also compared FedDC’s performance with baselines when
different levels of data heterogeneity are present. Experiment
results in Figure 20 show that, when the data heterogeneity is
high, weighted aggregation suffers significant performance
drop due to the biased model being trained. In contrast,
FedDC can effectively improve the FL performance on all the
three datasets, and such improvement is similarly more sig-
nificant on more challenging datasets such as ExtraSensory.

On the other hand, when the level of data heterogeneity is
low, FedDC retains the similar level of FL performance with
other baselines, indicating that our approach to switching
back to vanilla FL, as described in Section 4.3, can effectively
avoid unnecessary errors in delay compensation.
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Figure 22: Slow convergence of FL training with the

variant global data distribution, on PAMAP2 dataset

8.4 FL Performance under Variant Global
Data Distribution

We further consider a more challenging FL scenario where
the global data distribution continuously varies over time,
resulting in much slower convergence of FL training. Such
variance of data distribution commonly exists in practical
AloT applications. For example, in the HAR application, hu-
man activities in daytime and nighttime can significantly
differ. As shown in Figure 21, we emulate such variant data
distribution by dividing the global dataset corpus into two
parts, and smoothly transit the current global data from one
part to another part as FL training progresses. In practice,
such transition is concurrently ongoing on all IoT devices.
Based on such settings, results in Table 4 show that FedDC
significantly outperforms all the baselines on different AloT
datasets. Comparing results in Table 4 with those in Table
3 where data on each IoT device is fixed, we found that
FedDC achieves larger performance improvement when the
global data distribution is variant. This is because with the



ACM MOBICOM ’25, November 4-8, 2025, Hong Kong, China

Haoming Wang and Wei Gao

40.0

Accuracy (%)

0.0 0.0
° ° n n @ @ ° ° n

2 3 3
Sparsification rate (%)

(a) PAMAP? [43]

2 3 3
Sparsification rate (%)

(b) ExtraSensory [52]

n @ a ° ° n ° n @ 2
R & E)
Sparsification rate (%)

(c) MDI [38]

Figure 23: FL performance with different rates of gradient sparsification

| PAMAP2 EtraSensory MDI

Unweighted 38.9% 20.3% 65.1%
Weighted 23.8% 0% 59.0%
Asyn-tiers 37.5% 16.7% 66.8%
1st-Order 42.3% 22.4% 65.1%

W-Pred 42.1% 22.4% 65.1%
FedDC [ 53.5% 34.7% 69.3%

Table 4: FL performance with variant global data dis-
tribution and high device delays

variant global data distribution, the FL training converges
very slowly and FedDC’s delay compensation hence always
results in smaller errors compared to directly aggregating
delayed model updates into the global model. Such slow
convergence of FL training can be verified in Figure 22.

8.5 Computing Cost at the FL Server

Gradient inversion at the FL server is computationally expen-
sive and we proposed techniques in Section 5 to reduce the
server’s computing costs. As shown in Table 5, applying 95%
gradient sparsification (§5.1) and selective computation (§5.2)
can significantly reduce such computing costs to be within
the duration of one global epoch, when being tested on a
NVidia A5000 GPU. Since the IoT devices’ local trainings are
computed in parallel with FL server’s computation, as shown
in Figure 17, such reduction of computing cost ensures that
computing gradient inversion at the FL server will not incur
extra delays in the end-to-end FL training process®. Besides,
since FedDC does not incur any extra computations at [oT
devices, their local computing and communication costs are
exactly the same as those in vanilla FL.

FL model [ MLP 1D-CNN 2D-CNN
Full Computation 21.63 15.12 19.66
Selective Computation 2.54 2.23 3.71
Selective Computation + 95% SP || 0.91 0.82 0.88

Table 5: Computing delay of gradient inversion at the
server, measured as the number of global FL epochs

Meanwhile, we also evaluated the impact of these compu-
tationally efficient techniques on FL performance. Figure 23

3Note that, aggregation of model updates at the FL server is very lightweight
and incurs negligible computing overhead in most FL scenarios.

show that using 95% gradient sparsification only results in
<2% of FL performance drop.

8.6 Sensitivity Analysis

Switching to vanilla FL. As demonstrated in Section 4.3,
we need to switch back from FedDC to vanilla FL at the late
stage of FL training. However, since our approach cannot
compute the compensation error in the current global epoch,
there is always a latency in switching. To investigate the
impact of such latency on FL performance, we checked the
FL performance with different choices of switching using
the PAMAP2 dataset. Results in Figure 24 show that FL per-
formance with switching is significantly higher than that
without switch, but using different choices of switching has
little impact on FL performance, indicating that FedDC is
not sensitive to the latency in switching.
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Figure 24: Performance with different switch points

Device’s local FL training. FL performance could also be
affected by the local training programs being used at IoT
devices [42]. To evaluate the performance of FedDC in dif-
ferent FL settings, we use three different optimizers (SGD,
SGDW, Adam) for 10T device’s local model updates, and re-
sults in Figure 25 show that FedDC and all baselines exhibit
consistence FL performance with SGD and SGDW optimiz-
ers. However, with adaptive optimizers such as Adam that
increases the gradient divergence when the devices’ local
data is not i.i.d. [23], the FL performance significantly drops.

8.7 Scalability Analysis

To further explore the performance of FedDC in large-scale
AloT applications [39], we simulate a larger FL systems with
50 to 300 IoT devices, 10% of which are affected by high
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Figure 25: FL performance with different local training
optimizers and high amounts of device delays

device delays, using a central FL server. As shown in Figure
26, FedDC can maintain a consistent level of FL performance,
even when the number of IoT devices increases by 30X.
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Figure 26: FL performance in large-scale AIoT systems

9 Related Work

Weighted aggregation. Most existing solutions to device
delays in FL are based on weighted aggregation [10].These
solutions initially introduce metrics to quantify the global
model’s delay on each client device, which may be based
on either time [48, 66] or model discrepancies [54]. Subse-
quently, these metrics are used to calculate a decay coefficient
for slower devices and apply it to model updates. Other ap-
proaches adopt more fine-grained weighting [10, 53], where
different submodules are weighted individually.

However, weighted aggregation is always biased towards
fast devices, and affects global model’s accuracy when device
delays and data heterogeneity in FL are correlated. Others
suggest to use semi-asynchronous FL, where the server ei-
ther aggregates client model updates at a lower frequency
[40] or clusters clients into different asynchronous “tiers” ac-
cording to their update rates [8]. However, doing so cannot
completely eliminate the impact of device delays, because the
server’s aggregation still involves delayed model updates.
Other data estimation methods. Our approach to com-
pensating device delays using gradient inversion is inspired
by the existing work of estimating the device’s local training
data from the trained model. Some existing work trains a gen-
erative model [70] and compels its generated data samples
to exhibit high predictive values on the original model. [59]
also proposes to directly optimize randomly initialized input
data until it performs well on the original model. However,
their accuracy of knowledge transfer is generally too low to
ensure precise compensation of device delays. Other efforts
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enhance the quality of knowledge transfer by incorporating
natural image priors [33], using another dataset to introduce
general knowledge [57], or exploiting the model’s activation
sparsity [32, 49], but require extra datasets. Moreover, all
these methods require the devices’ local models to be fully
trained, which is usually infeasible in FL.

10 Discussions

Other data modalities in FL. Our evaluations involve data
modalities of time series and images, but FedDC can also be
applied to other modalities such as text. Since text is decom-
posed into discrete tokens, we can perform data estimation
in the continuous embedding space [68]. Since errors oc-
cur when projecting the estimated data from the embedding
space into discrete tokens, estimating text data is harder for
gradient inversion [12, 14]. This suggests that when applying
FedDC to text data, the risk of data privacy leakage is lower.
Handling multimodal data. A common approach to han-
dling multimodal data is to use submodules to extract feature
representations from different modalities and then fuse them
[5], and this approach also applies to FedDC. Considering
that the risk of privacy leakage may vary in each modality
[14], different sparsification rates should be used.

More complicated models in FL. The main difficulty of
training a complicated neural network model in FedDC is
that it incurs much higher computing overhead on IoT de-
vices. Such overhead can be reduced by using a pre-trained
model and freezing lower layers. Parameter-efficient training
techniques, such as model quantization [55], can also be used.
These techniques are orthogonal but applicable to FedDC.
Cost of handling different versions of model. In FedDC,
the server needs to tackle multiple versions of models and
data, which introduce extra cost in practice. Without loss of
generality, we assume that the server is much more power-
ful than AIoT devices in capabilities of computation, com-
munication and storage. Additionally, the aforementioned
parameter-efficient training techniques can also be applied
to reduce the computing cost of handling different versions
of Al models.

11 Conclusion

In this paper, we present FedDC, a new FL technique that
uses gradient inversion in compensating the error caused
correlated device delays. Experiment results show that our
technique can largely improve the model accuracy while
keeping privacy well-protected.
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