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Introduction to intertwined heterogeneities in FL 
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Federated learning (FL) :

Server

Client devicesClient data

Global model

Local updates

Reduce model accuracy Slow down the training

Aggregation



Introduction to intertwined heterogeneities
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Intertwined (data and device) heterogeneities: 

A real-world scenario of intertwined heterogeneities

Slow ClientsNormal Clients
e.g. data in certain classes or with particular features 
may only be available at some slow clients

Correlated Data distribution and Staleness
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Hazard rescue



Limitation of existing methods

Methods 1: Asynchronous FL with weighted aggregation

Asynchronous FL (AFL)[1] :

Weighted aggregation[2]: 

Limitation :
 Data on stale clients contribute less

3

Time
Normal
Client

Stale 
Client

Update 1

Update 1

Update 2

Update 2

Update 3

…Aggregate Aggregate Aggregate

Aggregate

Staleness

Weights Reduced weights to 
stale updates

Biased model:



Introduction to intertwined heterogeneities

Methods 2:Convert a stale update into an unstable one

First order compensation [3]:

Limitation: 
 Compensation error will significantly increase with staleness:
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Compensation error

Staleness

𝒈 𝒘𝒕+𝝉 ≈ 𝒈 𝒘𝒕 + 𝜵𝒈 𝒘𝒕 (𝒘𝒕+𝝉- 𝒘𝒕) , (τ is staleness)

estimated
update

stale
update

Correction
term

use Taylor expansion to estimate the unstable update



Our method: gradient inversion based compensation

Main idea: convert the stale update to unstable using gradient inversion

Step 1: local data estimation
 the server estimate client’s data distribution(𝑫𝒓𝒆𝒄) with gradient inversion
 
Step 2: unstale update estimation
 use 𝑫𝒓𝒆𝒄 to retrain the current global model as the estimation of unstale update
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Our method: gradient inversion based compensation

Main idea: convert the stale update to unstable using gradient inversion

Step 1: local data estimation
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𝐷𝑟𝑒𝑐 Model 𝒘𝒕−𝟏
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Target 
gradient
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Minimize the distance by optimizing 𝑫𝒓𝒆𝒄 

𝑫𝒓𝒆𝒄
∗ =  𝒂𝒓𝒈 𝒎𝒊𝒏𝑫𝒓𝒆𝒄
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Our method: gradient inversion based compensation

Main idea: convert the stale update to unstable using gradient inversion
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Step 2: unstale update estimation

Rationale of using 𝑫𝒓𝒆𝒄 to estimate the unstale update :

Similar loss surface compared with the original data

Unstale update estimation error:

First order compensation

Gradient inversion based 
compensation



Our method: gradient inversion based compensation

Details of method design 1: Switching back to Vanilla FL in Later Stages of FL Training

Vanilla FL has less error as model converges: Deciding the switching point:
 Computing the current error at later epoch
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Details of method design 2: Reducing the Computing Cost of Gradient Inversion

Sparsification: reduce the
the objective function complexity

Initialize 𝑫𝒓𝒆𝒄 with previous recover results
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Our method: gradient inversion based compensation

Details of method design 3: protecting Client data privacy

Most FL scenarios: 
 each client has a large batch of samples

Nearly impossible to pixel-wisely recover :

Samples in 𝑫𝒓𝒆𝒄

Raw data

5 best matches between samples in 𝑫𝒓𝒆𝒄 and raw data
(using LPIPS score as image similarity) 
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Extreme scenarios: 
 each client only has one sample)
- Use sparsification and gradient noise to mitigate 
the attack power of gradient inversion 

Protect the input image:

Protect the label:

Defense None
95% 

sparsification
95% sparsification 

+ noise

Label 
recovery 

ACC
85.5% 66.7% 46.4%



Experiment results

Experiment setting:
Data heterogeneity: sample different label distribution using Dirichlet distribution

Device heterogeneity (intertwined with data heterogeneity): 
select one data class to be affected by staleness, and apply different amounts of staleness to 10 clients
With the most data samples in the class

Dirichlet distribution with different α:
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- Unweighted aggregation (Vanilla FL) 
- Weighted aggregation[2] 
- First order compensation (1st-order)[3]
- Future model prediction (W-pred)[5]
- FL with asynchronous tiers (Asyn-tiers)[6]

Baselines:



Experiment results

FL Performance in the Fixed Data Scenario
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Main results: 

Variations: 

Model accuracy with different datasets Accuracy curve during training

Performance under different data heterogeneity Performance under different staleness



Experiment results

FL Performance in the Variant Data Scenario
Variant data setting: 
- Client data is initialized with MNIST data
- During training MNIST samples are 
gradually replaced by SVHN samples

Main results: 
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Variations: 

Performance under different staleness Performance under different data variation rates

Accuracy curve during training
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