
Tackling Intertwined Data and Device Heterogeneities in
Federated Learning with Unlimited Staleness

Haoming Wang (hw.wang@pitt.edu)
Wei Gao (weigao@pitt.edu)

AAAI 25

Code: https://github.com/pittisl/intertwined-FL
Extended version: https://arxiv.org/abs/2309.13536

Introduction to intertwined heterogeneities in FL

Data heterogeneity

of sample

Client ID

Client 1

Client 2

Client 3

Class 1

Class 2

Class 3

Time

Client 3

Client 2

Client 1

Finish

Finish

×

Device heterogeneity

System challenge in FL:

staleness

Local update

Idle

Epoch 1 Epoch 2 …

1

Federated learning (FL) :

Server

Client devicesClient data

Global model

Local updates

Reduce model accuracy Slow down the training

Aggregation

Introduction to intertwined heterogeneities

of sample
In certain classes

Client ID
Normal clients Stale Client

Client
staleness

Intertwined (data and device) heterogeneities:

A real-world scenario of intertwined heterogeneities

Slow ClientsNormal Clients
e.g. data in certain classes or with particular features
may only be available at some slow clients

Correlated Data distribution and Staleness

2

Server

×

Hazard rescue

Limitation of existing methods

Methods 1: Asynchronous FL with weighted aggregation

Asynchronous FL (AFL)[1] :

Weighted aggregation[2]:

Limitation :
 Data on stale clients contribute less

3

Time
Normal
Client

Stale
Client

Update 1

Update 1

Update 2

Update 2

Update 3

…Aggregate Aggregate Aggregate

Aggregate

Staleness

Weights Reduced weights to
stale updates

Biased model:

Introduction to intertwined heterogeneities

Methods 2:Convert a stale update into an unstable one

First order compensation [3]:

Limitation:
 Compensation error will significantly increase with staleness:

4

Compensation error

Staleness

𝒈 𝒘𝒕+𝝉 ≈ 𝒈 𝒘𝒕 + 𝜵𝒈 𝒘𝒕 (𝒘𝒕+𝝉- 𝒘𝒕) , (τ is staleness)

estimated
update

stale
update

Correction
term

use Taylor expansion to estimate the unstable update

Our method: gradient inversion based compensation

Main idea: convert the stale update to unstable using gradient inversion

Step 1: local data estimation
 the server estimate client’s data distribution(𝑫𝒓𝒆𝒄) with gradient inversion

Step 2: unstale update estimation
 use 𝑫𝒓𝒆𝒄 to retrain the current global model as the estimation of unstale update

5

Our method: gradient inversion based compensation

Main idea: convert the stale update to unstable using gradient inversion

Step 1: local data estimation

6

𝐷𝑟𝑒𝑐 Model 𝒘𝒕−𝟏

Gradient
𝒈𝒕

Target
gradient

Distance

Minimize the distance by optimizing 𝑫𝒓𝒆𝒄

𝑫𝒓𝒆𝒄
∗ = 𝒂𝒓𝒈 𝒎𝒊𝒏𝑫𝒓𝒆𝒄

𝝏𝑳[𝑫𝒓𝒆𝒄; 𝒘𝒕−𝟏]

𝝏𝒘𝒕−𝟏 − 𝒈𝒕

𝟐

𝟐

Our method: gradient inversion based compensation

Main idea: convert the stale update to unstable using gradient inversion

7

Step 2: unstale update estimation

Rationale of using 𝑫𝒓𝒆𝒄 to estimate the unstale update :

Similar loss surface compared with the original data

Unstale update estimation error:

First order compensation

Gradient inversion based
compensation

Our method: gradient inversion based compensation

Details of method design 1: Switching back to Vanilla FL in Later Stages of FL Training

Vanilla FL has less error as model converges: Deciding the switching point:
 Computing the current error at later epoch

8

Details of method design 2: Reducing the Computing Cost of Gradient Inversion

Sparsification: reduce the
the objective function complexity

Initialize 𝑫𝒓𝒆𝒄 with previous recover results

Switching
point

𝑤𝑖
𝑡−𝜏

Time

Client

Server

𝒕 𝒕 + 𝝉′

𝑤𝑖
𝑡

ෝ𝑤𝑖
𝑡 ෝ𝑤𝑖

𝑡

Stale update

Compensate Compute error

estimation

Ground truth

Our method: gradient inversion based compensation

Details of method design 3: protecting Client data privacy

Most FL scenarios:
 each client has a large batch of samples

Nearly impossible to pixel-wisely recover :

Samples in 𝑫𝒓𝒆𝒄

Raw data

5 best matches between samples in 𝑫𝒓𝒆𝒄 and raw data
(using LPIPS score as image similarity)

9

Extreme scenarios:
 each client only has one sample)
- Use sparsification and gradient noise to mitigate
the attack power of gradient inversion

Protect the input image:

Protect the label:

Defense None
95%

sparsification
95% sparsification

+ noise

Label
recovery

ACC
85.5% 66.7% 46.4%

Experiment results

Experiment setting:
Data heterogeneity: sample different label distribution using Dirichlet distribution

Device heterogeneity (intertwined with data heterogeneity):
select one data class to be affected by staleness, and apply different amounts of staleness to 10 clients
With the most data samples in the class

Dirichlet distribution with different α:

10

- Unweighted aggregation (Vanilla FL)
- Weighted aggregation[2]
- First order compensation (1st-order)[3]
- Future model prediction (W-pred)[5]
- FL with asynchronous tiers (Asyn-tiers)[6]

Baselines:

Experiment results

FL Performance in the Fixed Data Scenario

11

Main results:

Variations:

Model accuracy with different datasets Accuracy curve during training

Performance under different data heterogeneity Performance under different staleness

Experiment results

FL Performance in the Variant Data Scenario
Variant data setting:
- Client data is initialized with MNIST data
- During training MNIST samples are
gradually replaced by SVHN samples

Main results:

12

Variations:

Performance under different staleness Performance under different data variation rates

Accuracy curve during training

References

[1]Chen, Yujing. Asynchronous online federated learning for edge devices with non-iid data. In 2020
IEEE International Conference on Big Data (Big Data), 2020.
[2]Wang, Qiyuan. AsyncFedED: Asynchronous Federated Learning with Euclidean Distance based
Adaptive Weight Aggregation. In arXiv preprint, 2022.
[3] S. Zheng, Q. Meng, T. Wang, W. Chen, N. Yu, Z.-M. Ma, and T.-Y. Liu. Asynchronous stochastic
gradient descent with delay compensation. In International Conference on Machine Learning, pages
4120–4129. PMLR, 2017.
[4] Z. L. Ligeng Zhu and S. Han. Deep leakage from gradients. In Advances in neural information
processing systems 32, 2019
[5] I. Hakimi, S. Barkai, M. Gabel, and A. Schuster. Taming momentum in a distributed asynchronous
environment. arXiv preprint arXiv:1907.11612, 2019.
[6] Chai, Zheng. FedAT: A high-performance and communication-efficient federated learning system
with asynchronous tiers. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2021.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

