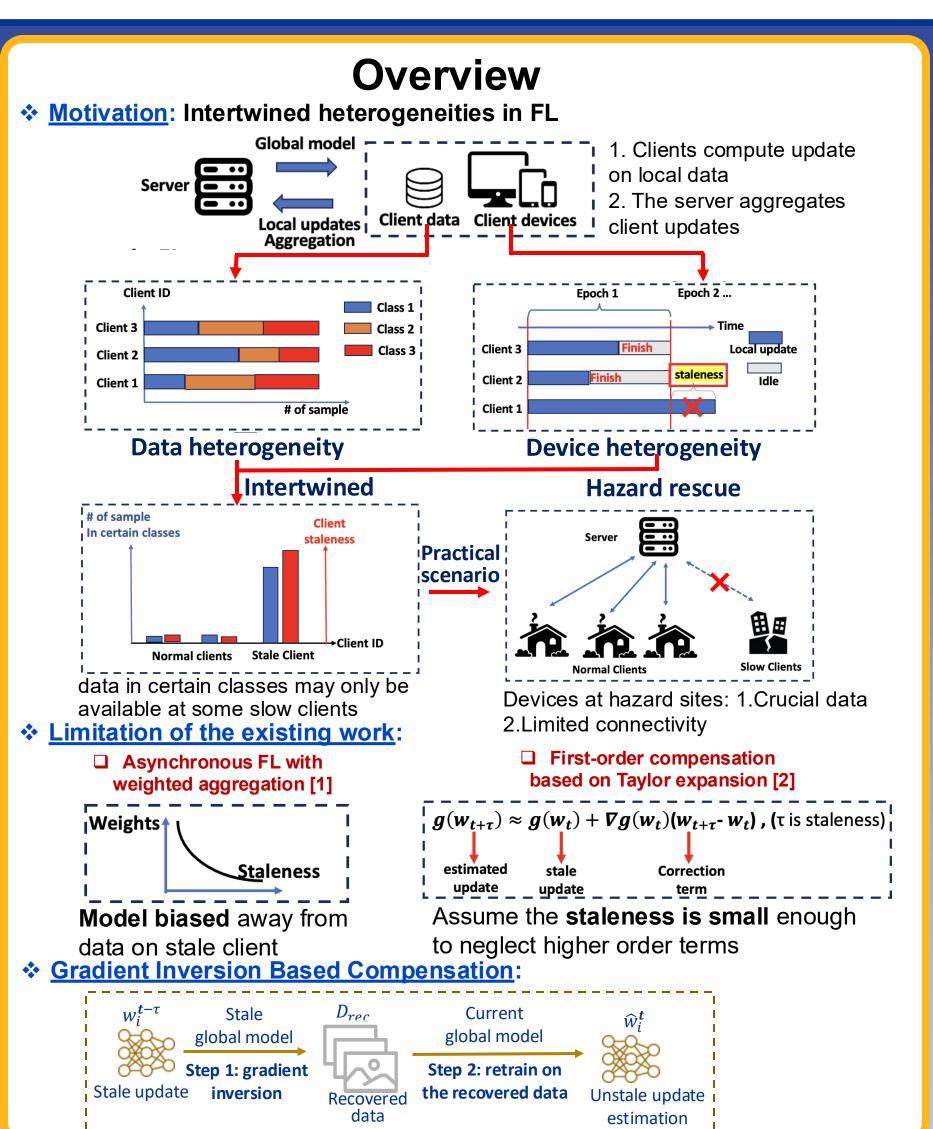
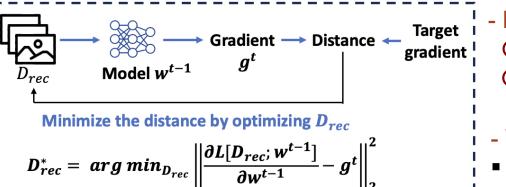


Tackling Intertwined Data and Device Heterogeneities in Federated Learning with Unlimited Staleness

Haoming Wang, Wei Gao

University of Pittsburgh





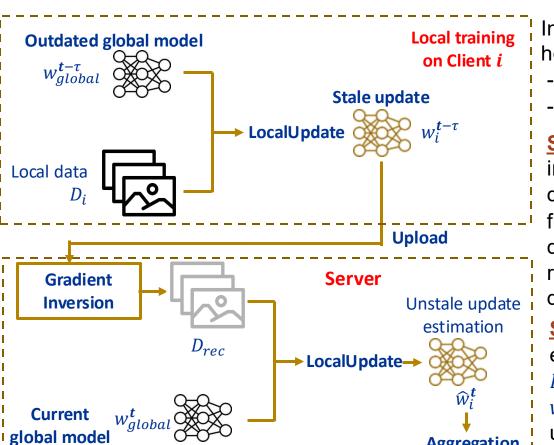
- Minimize the difference between

1 the trained model's gradient ② the gradient computed from the recovered data

- When D_{rec} has many samples:

- The quality of D_{rec} is low
- But it still contains useful information about client data

Main Idea



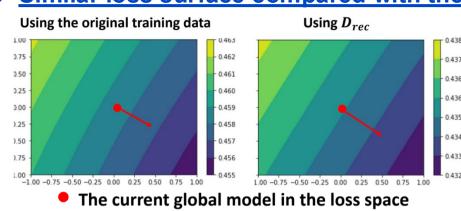
In this intertwined heterogeneities scenario:

- · Client *i* contain unique knowledge
- Can only upload stale update $w_i^{oldsymbol{t}- au}$

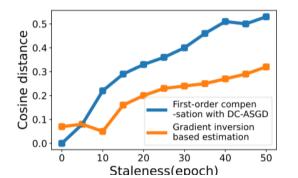
Step 1: the server uses gradient inversion to recover an intermediate dataset D_{rec} from $w_i^{t-\tau}$. Instead of fully recovering the client i's training data D_i , we only expect D_{rec} to represent the similar data distribution with D_i .

Step 2: The server computes an estimation of w_i^t from $w_i^{t-\tau}$ by using D_{rec} to train its current global model w_i^t , and aggregates \widehat{w}_i^t with model updates from other clients to update its global model in the current epoch.

❖ Similar loss surface compared with the original data:



The direction of the computed gradient



Compensation error compared with First-order compensation

Method Details

Switching back to Vanilla FL in later stages of FL Training

Vanilla FL has less error as model converges: Vanilla FL with staleness

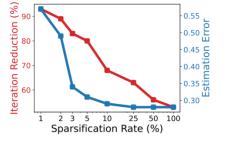
Switching 0.2 Training progress (%)

Deciding the switching point: Computing the current error at later epoch

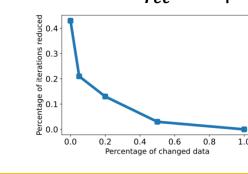
 $t + \tau'$ Stale update w^t Ground truth Client Compute error Compensate Server estimation

Reducing the Computing Cost of Gradient Inversion

Sparsification: reduce the the objective function complexity



Iterative initialization: Initialize D_{rec} with previous recover results



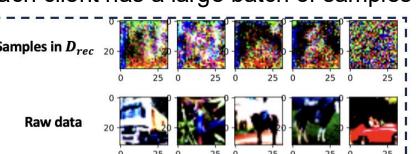
Computing cost reduction with different percentage of changed client data in each epoch

Method Details

Protecting the clients' data privacy

Most FL scenarios:

each client has a large batch of samples

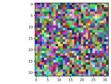


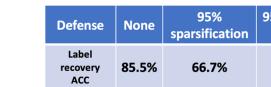
Nearly impossible to pixel-wisely recover

Extreme scenarios:

- each client only has one sample

Sparsification and gradient noise to mitigate the attack power





Protecting input images

Protecting labels

46.4%

Performance Evaluation

Experiment setup and baselines

■ Data heterogeneity

Dirichlet distribution:

 $(\alpha = 0.1)$

■ Device heterogeneity

- select one data class to be affected by staleness - apply staleness to 10
- clients with the most data samples in the class

■ Baselines:

- Vanilla FL (1) Unweighted)
 - Asynchronous FL with:
 - Weighted aggregation
 - 3 Asynchronous Tiers
 - Unstale update estimation:
 - - 4 First-order method
 - 5 Future model prediction

Scenario 1: Fixed client data

Accuracy(%)	MNIST	FMNIST	CIFAR10	M
Unweighted	57.4	49.2	22.8	72
Weighted	39.2	30.1	12.6	61
1st-Order	57.4	49.3	22.6	72
W-Pred	57.3	48.9	22.9	72
Asyn-Tiers	57.6	50.3	25.9	69
Ours	61.2	55.4	29.4	75

(a) MNIST, LeNet (b) CIFAR-10, ResNet18

Accuracy on data affected by staleness

Scenario 2: Variant client data during FL training **Experiment results:**

Variant data setting:

- Client data is initialized with MNIST data - During training MNIST
- samples are gradually replaced by SVHN samples

200 300 400 500 600 700 800 Epoch

Accuracy curve during training

References

- [1] Federated learning with buffered asynchronous aggregation.
- [2] Asynchronous stochastic gradient descent with delay compensation.
- [3] Deep leakage from gradients.